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Due to the complexity of the infrasound environment and the high costs associated with
data collection, frequent acquisition of infrasound data is often impractical, resulting in a
limited amount of labeled data. To address the challenge of low classification prediction
accuracy caused by data scarcity, this paper proposes an infrasound prediction model based on
a Time-series Generative Adversarial Network (TimeGAN) and Coordinated Attention
Prototype Network (CAPN) (TimeGAN-CAPN). The model begins by introducing TimeGAN,
where the generative network is trained using a combination of unsupervised and supervised
learning. This approach enables the network to operate within the latent space of temporal
features and generate time-series data that closely aligns with the distribution of the original
data. These generated samples are then combined with the original data to form an augmented
dataset. Subsequently, the augmented data is input into the CAPN, which enhances the sample
size per class, allowing for more precise class prototypes and improving the prediction accuracy
of the model. Furthermore, the quality and diversity of the data generated by TimeGAN are
quantitatively and qualitatively assessed using Maximum Mean Discrepancy (MMD) and t-
Distributed Stochastic Neighbor Embedding (t-SNE), facilitating a comparison and verification
of the generated data's performance. Experimental results show that TimeGAN-CAPN
significantly outperforms the CAPN model in classification tasks with limited infrasound data,
achieving a 7.15% increase in accuracy. This demonstrates that the proposed method is highly
effective for predicting infrasound-related disasters, particularly in scenarios with small sample
sizes.
Keywords: infrasound signal; time-series generative adversarial network; coordinated

attention prototype network; maximum mean discrepancy.



1. Introduction

Infrasound (<20Hz) refers to sound waves with frequencies below the human hearing
range, and is characterized by long propagation distances and strong penetration ability (Sovilla
et al., 2025; Lu et al., 2023). Many extreme events, such as earthquakes, tsunamis, and
explosions, generate infrasound waves. Globally, infrasound monitoring has been widely
applied in the prediction and prevention of natural disasters. Infrasound event detection is the
foundation of infrasound monitoring, with its main goal being to extract infrasound events from
a large amount of background noise and determine the event’s scope (Dong et al., 2024). Event
detection is significant for subsequent research such as event classification and localization.
Therefore, improving the effectiveness of event detection has become a key issue in the field
of infrasound research.

The importance of infrasound event detection algorithms in infrasound monitoring has led
to rapid advancements in their technological research. Many scholars have conducted studies
on infrasound event detection methods, and new methods continue to be introduced. Baeza et
al. (2022) explored the potential health impacts of infrasound and advocates for improvements
in housing conditions to mitigate these effects. Watson et al. (2022) reviewed the advancements
in volcano infrasound research and outlines future directions for further investigation and
application in volcanic monitoring. Friedrich ef al. (2023) examined how infrasound affects the
perception of low-frequency sounds and its potential influence on human perception and
response. Hupe er al. (2022) discussed the use of infrasound data products from the
International Monitoring System for atmospheric studies and various civilian applications.
Macpherson et al. (2023) explored the use of local infrasound to estimate seismic velocity and
earthquake magnitudes, offering a new approach for seismic monitoring. Listowski et al. (2022)
investigated the use of infrasound for remotely monitoring Mediterranean hurricanes,
highlighting its potential for early detection and tracking. Zajamsek et al. (2023) explored how
infrasound influences the detectability of amplitude-modulated tonal noise, focusing on its
impact on human perception. Wilson et al. (2023) presented findings from a long-term
microphone array deployment in Oklahoma, analyzing infrasound and low-audible acoustic

detections for various environmental and geophysical applications. Yang ef al. (2025) examined



the correlation between gas desorption processes and infrasound signals, investigating the
underlying mechanisms that link the two phenomena. However, the above methods do not
consider the prediction of infrasound signals in small sample scenarios.

To address the challenge of low classification prediction accuracy caused by the scarcity
of labeled infrasound signal samples, this paper proposes an infrasound prediction model based
on TimeGAN-CAPN. The model first expands the temporal infrasound data using TimeGAN,
then combines the generated data with the original dataset to train the prediction model, thereby
enhancing its performance. Subsequently, drawing on the principles of metric learning, a
coordinated attention mechanism is integrated into the traditional prototype network to extract
more discriminative feature information, facilitating the accurate construction of metric
prototypes for various types of infrasound. Inspired by the biological binocular system, a deep
mutual learning framework is introduced to integrate convolutional neural networks with
CAPN, further improving the model’s prediction accuracy. Experimental results demonstrate
that the proposed method outperforms other approaches in classification performance,
significantly enhancing disaster early warning rates and advancing the practical application of
infrasound detection algorithms.

The structure of this paper is as follows: Sec. 2 provides a brief overview of the basic
theories behind TimeGAN, CAPN, and TimeGAN-CAPN, which are used in this study; Sec. 3
presents a performance comparison of different methods through experiments; finally,

conclusions are drawn in Sec. 4.
2. Methods

2.1. TimeGAN

Yoon et al. proposed the TimeGAN by combining the flexibility of unsupervised learning
with the strong control of the training process in supervised learning (Yoon ef al., 2019). Its
training process is essentially a process of solving the min-max problem of a binary function.
The model consists of two networks: the reconstruction network and the embedding network;
and two generative models: the discriminator and the generator. It uses three different loss
functions: the generation loss function, the supervised loss function, and the unsupervised loss
function to train the network.

The Time-GAN model uses gradient descent for parameter optimization, with the
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generator typically taking random noise and vectors as input. The loss function is expressed as

follows (Sharma et al., 2024):
Ls(2) = Ezp,z) |log (1 - D(6(2)))]. (1)
where Lg(+) isthe generator’s loss function, E(:) is the embedding network’s expected loss,

G(-) is the generator function, D(-) is the discriminator function, P,(-) is the noise data

distribution, Z is the random variable for noise input.
The input variables for the discriminator are synthetic data and real data to be distinguished,

and the loss function is expressed as (Vuletic et al., 2024) :
Lp(x) = Ex p,x [log D (x)] + Ex psx) [108(1 - D(x))] (2)
where Lp(-) is the real data variable, i is the fake data variable, P;(:)is the real data

distribution, x is the input random variable.

2.2. CAPN

The CAPN model is shown in Fig. 1. It consists of two parallel views: in the global view,
a convolutional neural network (CNN) is used to capture inter-class relationships, while in the
local view, a prototype network with a coordinated attention mechanism focuses more on
matching details (Jiang et al., 2025). The two views are then aggregated through a deep mutual
learning framework, implicitly exploring useful knowledge from each other. The training
process aims to find the best hyperparameter settings and leverage prior knowledge to better
train specific test tasks. Finally, during the testing process, the collaborative features from both
views are combined to perform classification tasks, thereby improving the accuracy of few-shot
classification prediction. The model is mainly divided into three parts: the global view, the local

view, and cross-view mutual learning.
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Fig. 1. Structure of CAPN.
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2.2.1. The global view
In the global view, a one-dimensional convolutional network is used for training.
Specifically, for a given task I', a global learner Ag is trained to map each data sample x; in

the I' set to a high-dimensional space. The probability distribution of x; is expressed as

follows (Zhang et al., 2024):

Py = ylx) = o (AG(x), 3)
where o is the softmax activation function. It serves to combine the extracted features for
nonlinear activation, outputting the probability distribution of each class, which is then used for
classification.

The loss function is calculated using cross-entropy, i.e., the negative logarithm of the

probability P(y; = y|x;). Therefore, the loss function for the global view is as follows (Tang

etal.,2023):
Lglobal = E(xi,yi)ET ) Z?]=1 yilogP (y; = ylx). 4)

2.2.2. The local view

In the local view, a prototype network is used to match each query sample with the class
prototype from the support set in the embedding space. Therefore, in the local view, a prototype
network with a coordinated attention mechanism is applied.

This model consists of three parts: feature embedding, prototype generation, and feature
distance-based classification. The structure is shown in Fig. 2. The first step is to use a feature
embedding module with an attention mechanism for feature embedding. Support set and query
set samples are passed through the convolutional layers. By adding the coordinated attention
mechanism, both spatial and channel information are extracted, and by embedding position
information in channel attention, accurate position details and long-range dependencies are
captured. This allows the feature embedding to focus more on useful local feature information,
enhancing the feature representation ability of the feature embedding network. The second step
is to compute the class prototype features by averaging the feature maps of samples from the
same class. The mean feature serves as the class prototype feature. The third step is to measure

the distance between the category prototype features learned by the feature embedding network



and the query sample features using a selected distance metric, such as Euclidean distance.
According to the principle that similar samples are close and dissimilar samples are far apart,
the closest prototype to the query set output is selected as the predicted result, and the network
is trained until it meets the required model and label prototypes. Classification prediction is
then performed using the saved optimal coordinated attention prototype network.
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Fig. 2. Structure of CAPN for the classification prediction.

2.2.3. The cross-view mutual learning
In addition to learning within each individual view, the global and local views also
mutually promote each other through cross-view interaction in the deep mutual learning
network. Specifically, for each view, in addition to completing its own training task, the view
also minimizes the imitation loss from the other view. This imitation loss uses the Kullback-
Leibler divergence to quantify the match between the prediction probabilities of the two
networks, which aids in implicit knowledge transfer. The mutual loss is shown in Eq. (5), which

includes two sub-items (Ji et al., 2020):

Lmutual = DKL(FlllEg) + DKL((FG”Fl)) (5)
Der(FillF;) = Fy log - (6)
Dii(F|IF1) = 10«9% ™)

where F() represents the feature distribution computed by o(Ag(x)), and the interaction
problem is considered from the perspective of feature distribution consistency. The learning in
Euclidean space focuses on relative relationships rather than hard constraints like mean square
error. This is because overly strong supervision signals are not conducive to preserving the

specificity of both views.



Thus, the final loss function of the model is given by (Ruddick ef al., 2024):

Liotar = aLglopal + ,an + ¥ Lmutuals 3
where a, [, and y are the weighting factors. The optimal loss weights «, f, and y are
determined through a systematic hyperparameter tuning process using grid search combined
with cross-validation. This paper explores various combinations of a, f, and y within a pre-
defined range, informed by prior work on similar models and the characteristics of infrasound
data. The model’s performance is evaluated based on classification accuracy and loss using a
validation set, with the aim of balancing the three loss terms — reconstruction loss, supervised
loss, and unsupervised loss — while avoiding overfitting. After multiple iterations, the values
that resulted in the highest overall performance are selected, ensuring the model effectively

captured both temporal and discriminative features of the infrasound signals.

2.3. The proposed approach

The TimeGAN-CAPN infrasound prediction model proposed in this paper is illustrated in
Fig. 3. It consists of three main components: data preprocessing, data generation, and
infrasound prediction. In the data preprocessing phase, missing values in the sensor-collected
data are imputed using the nearest neighbor interpolation method. The data is then normalized
using min-max normalization, ensuring consistent dimensions and complete features, which
enhances its usability. In the data generation phase, a TimeGAN model is constructed, and the
collected data samples are fed into the generative model. Through an adversarial process
between the generator and discriminator in the latent space, the loss function is computed to
update the model parameters, ultimately generating high-quality infrasound data samples.
These generated samples are then combined with the original data to form an augmented dataset.
In the infrasound prediction phase, the synthesized dataset is split into a training set and a test
set. The training set is used to train the CAPN-based infrasound prediction model. The final

model is then applied to infrasound prediction tasks for early disaster detection.

2.3.1. Data preprocessing
The collected infrasound dataset contains valuable infrasound characteristics but is
presented in various forms, lacking uniformity, which makes it unsuitable for direct use in

machine learning models. Consequently, data preprocessing is essential to extract useful



parameters and convert the infrasound data into a standardized format that can be effectively
recognized by learning algorithms. Initially, missing values are imputed to ensure the
completeness of the dataset. Following this, the input vectors are normalized to standardize the
units, thereby preventing issues such as disproportionately large feature weights that could lead

to increased model training time or gradient explosion problems.
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Fig. 3. Framework of the proposed approach.

In the experiments, the nearest neighbor interpolation method is used to fill missing data.
The nearest neighbor interpolation method uses the previous and next values of the missing
data. Let the value at time t; be x;, at time t, be x,, and at time t; be x3. The missing

value x, can be expressed as follows (Sehar et al., 2025):

X2—X1 _ Y2=YV1
X3—X1 Y3—Y1

)
For normalization, the min-max normalization method is used to map the results to the

interval [0, 1], as shown in Eq. (10). The original data x is normalized to x*, where Xpip

and xp.x are the minimum and maximum values in the original data, respectively (Mitropoulos

etal.,2022):



x* — X—Xmin (10)

XMinmax’
2.3.2. Data generation

In the data generation phase, the TimeGAN model is composed of four primary
components: the embedding network, the recovery network, the sequence generator, and the
sequence discriminator. The embedding and recovery networks fall under the autoencoder
category, while the sequence generator and discriminator are part of the generative adversarial
network framework. As a result, TimeGAN involves joint training of both the autoencoding and
adversarial components. In the autoencoding section, the embedding network maps high-
dimensional data into a lower-dimensional vector, or latent space, to capture essential feature
information. The recovery network then reconstructs the data from this latent space back to its
original dimensionality, minimizing the reconstruction loss Lr to optimize the representation of
the latent space. Following the principle that the dynamics of complex systems are often driven
by a smaller set of lower-dimensional factors, the adversarial component trains the sequence
generator and discriminator within the latent space produced by the embedding network. This
approach alleviates the challenges associated with high-dimensional data during the adversarial

training process.

The embedding and recovery functions achieve the mapping from feature space to latent
space, enabling the adversarial network to learn the potential time characteristics of the data
through low-dimensional representations. Let Hg represent the latent vector space containing
time-related feature S, and similarly, let Hy represent the latent vector space for static feature
X. The role of the embedding function e is to encode real-time sequences into the latent space,
defined as S X [[;X — Hs X [[¢Hx. This function uses a recurrent neural network (RNN) to
perform the mapping, encoding both static and temporal features into low-dimensional latent
vectors hg, hy.r = e(S,X;.r) that are easier for the network to learn. The embedding function

is expressed as (Ruddick et al., 2024):

hs = es(S)
, 11
{ht = ex(hs, he—1, Xt) (b

where es: S = Hs is the embedding function for static features, aimed at converting static
features S into low-dimensional static features hg through mapping, and ey: H¢ X Hy X X —
Hy is the RNN-based embedding function for temporal features, aiming to map temporal

features X; into low-dimensional static features #4;. It follows causal ordering, meaning each



step’s output depends only on the preceding information.
The recovery function y performs decoding, defined as Hg X [[;Hyx — S X [[+X. It uses
a feedforward neural network (FNN) to restore the low-dimensional latent code back into high-
dimensional static and temporal features S, X;.; = y(hs, hy.r) (Ruddick et al., 2024):
{ ~S~ = ys(hs)
Xe =yx(he)

where ys: Hg — Sis the recovery function for static features, which is the inverse mapping of

(12)

hg, and similarly, yx: Hy = Xrepresents the recovery network for temporal feature embeddings,
which is the inverse mapping of #;.

In the autoencoding part, the embedding function maps high-dimensional static and
temporal features into a low-dimensional latent space, and the recovery function maps them
back to high-dimensional features. Therefore, the embedding function and recovery function
are reversible mappings existing between feature space and latent space. They can accurately
represent the high-dimensional reconstructed data S, X;.; using high-dimensional original data
S, X,.r and low-dimensional latent vectors hg, hy.r . The reconstruction loss Lp of the
autoencoder part is shown in Eq. (13), which represents the autoencoder’s understanding of the
intrinsic patterns in the input data (JI et al., 2020). By optimizing the reconstruction, the

autoencoder can generate higher-quality low-dimensional latent representations:

Lg = Esx o, [||s — 8[|, + Zellxe - Xt||2]. (13)

During TimeGAN’s training, two types of data are input into the sequence generator. In
the open-loop mode, the low-dimensional data hg, h;.; generated by the generator is input into
the sequence generator to obtain the next generated vector h,. Then, by optimizing the
unsupervised loss Ly, the probability of correctly classifying the real data hg, hy.;r and
generated data g, iiy.p is increased (Ji et al., 2020):

Ly = Esx,, ,[logys + X log ye] + Esx, . ,[log(1 — 7s) + X(1 — logy,)]. (14)

Due to insufficient adversarial feedback from the sequence discriminator, the sequence
generator does not fully capture the conditional distribution of the time steps in the real data.
Therefore, TimeGAN introduces supervised loss to further constrain the model and alternates
training in the closed-loop mode. The low-dimensional temporal latent sequence hj.._4
encoded by the embedding network is input into the sequence generator to obtain the latent
vector for the next time step. Then, the supervised loss is optimized using the maximum
likelihood method, which reflects the similarity between the data generated by the sequence

generator and the data encoded by the autoencoder. This loss measures the difference between
10



distributions p(Ht |Hs, Hl,t—l) and ﬁ(HtlHS, Hl,t—l)- The supervised loss Lg obtained using
the maximum likelihood method (Tang et al., 2023):

Ls = Esx, 1 p [(Xellhe = gx (hs, he—1, 20)|l2]. (15)

At each training step, the difference between the next latent vector from the embedding

function and the next latent vector synthesized by the sequence generator needs to be evaluated.

Although the unsupervised loss L; can guide the sequence generator to create real sequences,

the supervised loss Lg ensures that it generates smooth transitions.
2.3.3. Infrasound prediction
The specific process of the coordinated attention mechanism is shown in Fig. 4, which

includes two steps: information embedding and attention generation.
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Fig. 4. Schematic of the coordinated attention generation process

The information embedding component plays a crucial role in enhancing the attention
module's ability to capture a higher-quality global receptive field while preserving the accuracy
of positional encoding. In traditional channel attention, global pooling is commonly used to
encode spatial information. However, this approach often compresses global spatial data into
channels, making it challenging to retain precise positional information. To address this issue,
the information embedding operation decomposes the global average pooling step by pooling
separately along both the horizontal and vertical axes of the input features. This technique
aggregates features from both spatial directions, resulting in two feature maps that retain
directional information. As shown in Fig. 5, by performing transformations along both
directions, long-range dependencies along one spatial axis and positional information along the

other are captured by the attention module, enabling the network to more effectively localize
11



key targets.
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Fig. 5. Schematic of the coordinated attention information embedding operation.

Specifically, in the horizontal direction, the global average pooling operation uses a
pooling kernel of size H X 1 to compress the input feature X dimensions from H X W X C
to HX1XC (Tanget al.,2023):

ZE(h) = o Tozazw X (h,@), 28 € REHL, (16)

In the vertical direction, the global average pooling operation uses a pooling kernel of
1 X Wsize to compress the input feature dimensions from H X W X C to H X 1 X C (Zhang
etal.,2024):

Z¥(W) = = Tospsn X, (b,w), 2 € ROV, (17)

The attention generation operation aims to fully utilize the positional information encoded
in the embedding operation and capture the regions of interest and relationships between
channels. Specifically, the feature maps from the two directions, Z» and ZY, are concatenated
along the channel dimension, and then convolution operations are applied using a shared
convolutional transformation function F;, obtaining intermediate feature maps f, f €

C
R +W), which encode both horizontal and vertical directions (Zhang et al., 2024):

9
f =6 (F([z"2"])).f € RF ), (18)
where § isthe non-linear activation function Relu, [ , ] represents the concatenation along
the spatial dimension.
Then, the intermediate feature map f is split along the spatial dimensions into two feature

c c
maps f" and f¥, f* e RF¥, ¥ € RP™Y. Each feature map is upsampled using convolution
operations F, and F,, obtaining two directional attention weights g" and g%, g" €

REXHX1 gw e REXIXW “ag follows (Jiang et al., 2025):

g"= o (F(f"). (19)

12



g* = a(R,(f")). (20)
Finally, the attention weights g" and g"are multiplied with the original features x; to

obtain the scaled features y. (Jiang et al., 2025) :
ye(a,b) = xc(a,b) x g¢(a) x g (b). 21)
2.4. Data det

This study utilizes infrasound data provided by the international monitoring system (IMS)
with support from the Comprehensive Nuclear-Test-Ban Treaty Beijing National Data Center.
A total of 611 infrasound data sets are collected from six distinct infrasound sensor arrays
located globally. These data sets are categorized into three types of infrasound events:
Earthquake, Tsunami, and Volcano. All infrasound recordings have a sampling frequency of 20
Hz. Table 1 presents the details of the infrasound data collected from various regions, while

Fig. 6 illustrates the geographical distribution of the infrasound stations.

Table 1. Information of infrasound data.

Event type Data source Geographic Number of  Total Sampling
(IMS Station Code) coordinate signals frequency [Hz]
114CL (-33.65,-78.79) 74 20
Earthquake 130JP (35.31,140.31) 124 203 20
I59US (19.59, -155.89) 6 20
110CA (50.20, -96.03) 4 20
Tsunami 122FR (—22.18,166.85) 53 518 20
130JP (35.31,140.31) 113 20
152GB (=7.38,72.48) 66 20
Volcano 130JP (35.31,140.31) 189 189 20

120°% 180

Fig. 6. Map of the infrasound station.

13



3. Experiments
3.1 Experiments setup

The operating system used in this study is Windows 11, with CUDA 10.0 and cuDNN 7.4
for accelerated training. The hardware used includes an NVIDIA Quadro P4000 (8 GB memory).
The network development framework is TensorFlow 1.14, and programming is done in Python.
The CPU used is an Intel(R) Core(TM) i15-11320H CPU @ 3.20 GHz, 2.5 GHz. As described
in Subsec. 2.2, the key parameters of the CAPN are summarized in Table 2. The simulation
validation focuses on applying the infrasound signal data to assess the feature learning
performance of the proposed CAPN model. Each infrasound signal consists of 10 400 data
points. The dataset is divided into training and testing samples. The input map size for the
CAPN model is 128 x 128 x 1. The number of iterations is set to 60.

Table 2. Parameter of CAPN.

Number of layer Layer type Kernel size Filters
1 Convolution 1 12 x 12 4
2 Maxpooling 1 5%x5 -
3 Convolution 2 7x7 4
4 Maxpooling 2 5x%5 -
5 Convolution 3 5x%5 8
6 Maxpooling 3 5%5 -
7 Flatten - -
8 Fully-connected - -
9 Softmax - -

3.2 Data preprocessing

The infrasound data collected in this study are smoothed to effectively eliminate noise. Fig.
7a displays the original infrasound signal, which contains substantial noise. To reduce
computational complexity, a moving average filtering method is applied for smoothing, with
the resulting signal shown in Fig. 7b. Details of the moving average filtering method can be

found in (Mitropoulos et al., 2022). A total of 70 % of the smoothed data are used as the training

14



set, while the remaining 30 % are allocated as the testing set. Finally, data standardization and

normalization are performed using Egs. (9) and (10).
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Fig. 7. Original (a) and preprocessing (b) signal.

3.3 Data generation

To evaluate the quality of the data generated by the model, both fidelity and diversity are
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taken into account. Fidelity refers to the degree to which the generated samples resemble the
real data, while diversity ensures that the generated samples do not exhibit excessive similarity
to each other. Thus, the performance of the generated model is assessed from both qualitative

and quantitative perspectives.

3.3.1. Discriminator score

The performance of the generative model is quantitatively assessed from the quality and
diversity of the generated samples. In this study, the maximum mean discrepancy (MMD)
metric is used to evaluate the generative model based on the difference in sample distributions.
MMD is used to measure the distance between two distributions in Hilbert space. Thus, for the
generative model, this metric can measure the distance between the original data distribution
P, and the generated data distribution Fy. The smaller the MMD distance, the more similar the
distributions of the original and generated data are, indicating higher quality of the generated
samples and better model performance.

When calculating the MMD distance, the Gaussian kernel function K(x,y) is used to
map the two samples into a real number (Wang ef al., 2021):

K (x,y) = exp(=llx = ylI*). (22)
The MMD distance Dymp (Po, Pg) is expressed as Eq. (23) (Wang et al., 2021) :

DMMD(Po' Rg) = Ex,x'~Po [K(x' x’)] ~ 2Ex~Po,y~Pg [K(x; y)] + Ey,y'~pg [K(y, y,)]- (23)

MMD Dislance between Generated Data and Real Data
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Fig. 8. MMD distances between generated data from different models and real data.

In this experiment, both the original data and generated data have four state types: normal,

earthquake, volcano, and tsunami. Therefore, the distribution of the original data is denoted as
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Py i = (1,2,3,4), and the distribution of the generated data is denoted as Pg;i = (1,2,3,4). As
shown in Fig. 8, the MMD distance between the original and generated data is calculated for
infrasound data after applying several models, including GAN, LSTM, GRU, Transformer,
WGAN, DCGAN, and TimeGAN. Compared to the other generative adversarial network
models, TimeGAN exhibits the smallest MMD distance between the original and generated
data. Notably, for the volcano data, the MMD distance is 1.364 times smaller for TimeGAN
than for GAN, indicating that the distribution of TimeGAN-generated data closely matches the
original data distribution, resulting in superior model performance. In contrast, the GAN model
shows the largest discrepancy between the generated and original data, making it the least
effective model. For the tsunami data, all four generative models show relatively high
performance due to the distinct infrasound characteristics. However, for volcano data, where
infrasound features are less pronounced, all models exhibit the largest MMD distance,
suggesting a greater challenge in accurately modeling such data. Therefore, it can be concluded
that TimeGAN generates relatively high-quality samples, outperforming the other models in
terms of data fidelity.

In addition, the MMD metric is also used to evaluate the diversity of the generated samples,
albeit with a slightly different focus. Here, the goal is to measure the variability between the
sample distributions within the generated data. Specifically, the MMD distance between the
distributions of individual samples is calculated, and the mean of these distances is taken as the
internal MMD distance of the generated data. A higher value of this distance indicates greater
variability between the samples, reflecting higher diversity in the generated data and superior
performance of the GAN.

Let the number of distribution samples be 1, and let P; and P; represent the source
distributions of two different samples. The MMD distance is given by (Wang et al., 2021):
Dwmin (P B) = 2 = 2By pyjp [ K (0, 2)] £ # J. (24)
Then, the internal MMD distance of the generated data, which measures the diversity

within the samples, is given by (WANG et al., 2021):

1 _
’=1+2+...+N_1Zi]\;llz_]/‘vszMMD(E’Pj)' (25)

In the experiment, the internal MMD distances of the generated data from three classical
generative adversarial networks and the proposed TimeGAN model are calculated, with the
results presented in Fig. 9. The analysis reveals that, among the seven generative models,

TimeGAN produces data with the largest internal MMD distance, indicating that it generates
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data with higher diversity. This is particularly evident in the tsunami data. In contrast, GAN and
WGAN perform the worst in generating diverse samples. For example, in the tsunami case, the
internal MMD distance of the data generated by GAN is 0.0024 smaller than that of TimeGAN,
WGAN is 0.002 smaller, and LSTM is 0.0018 smaller than TimeGAN. These results
demonstrate that TimeGAN outperforms other models in terms of generating diverse and varied

infrasound samples.

MMD Distance within the Generated Data
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Fig. 9. Internal MMD distances of generated data from different models.

A comprehensive analysis of the MMD metric reveals that, in most cases, GAN, WGAN,
and LSTM models only offer rough approximations of the original data, with limited quality
and diversity in the generated samples. In contrast, TimeGAN, DCGAN, Transformer, and GRU
models generate data with higher quality and greater diversity. To further validate the
effectiveness of TimeGAN in infrasound prediction, a detailed performance comparison is

conducted between these models.

3.3.2. Visualization
In the previous MMD analysis, TimeGAN and DCGAN demonstrated superior
performance, and thus, these two models are the focus of further analysis. To qualitatively
evaluate the effectiveness of the proposed method, the t-SNE and PCA techniques are applied
to visualize the distribution of the generated and original samples in a two-dimensional space.

Figure 10 presents the results of the PCA and t-SNE visualizations, where red points represent
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the feature distribution of the real infrasound data, and blue points represent the feature
distribution of the generated infrasound data. The closer the two sets of points are to each other,
the better the model’s performance, indicating that the distribution of the generated samples

closely matches that of the real data.
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Fig. 10. WGAN and TimeGAN data visualization.

From the analysis, the feature distribution of the data generated by TimeGAN closely aligns
with the feature profile of the original data, demonstrating a high degree of similarity. In contrast,
DCGAN fails to generate certain features that are present in the original data, resulting in a
mismatch between the feature distribution of the generated and original data. When augmenting
time-dependent data, TimeGAN significantly outperforms DCGAN, showcasing its superior

performance in capturing temporal dynamics.
3.4 Infrasound prediction

Considering that the model is designed for infrasound prediction tasks with small sample

sizes, the generated samples must be as effective as the real data samples. These samples should
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serve to augment the dataset, ensuring that each sample contains sufficient information to
improve the performance of the infrasound prediction model. The generated data is combined
with the original data, with the amount of synthetic data being twice the size of the original
dataset. Additionally, three consecutive data points are grouped together to form a single sample.
The synthesized dataset is then used to train the diagnostic model, which is subsequently tested
on a separate test set. The infrasound prediction accuracy after training is used as an evaluation
metric to assess whether the inclusion of the generated data enhances the model’s predictive
capability, particularly in small sample scenarios.

The results shown in Fig. 11 represent the accuracy after 60 iterations of the model. From
the figure, it can be observed that the data generated by the classical GAN-CAPN and LSTM-
CAPN model reduces the accuracy by 5.76 % and 3.64 % compared to CAPN, which decreases
the performance of the infrasound prediction model. Apart from the GAN-CAPN and LSTM-
CAPN model, datasets that were not augmented with a generative model perform poorly in
infrasound prediction after training. Compared to the DCGAN-CAPN, WGAN-CAPN,
Transformer-CAPN, and GRU-CAPN models, the TimeGAN-CAPN model generates higher-
quality data by considering the internal temporal correlations in the data, effectively addressing
the issue of insufficient information in the samples. The prediction accuracy improved by 5.62 %
compared to when no augmentation was performed. Therefore, using the TimeGAN model to
augment the infrasound data and inputting the augmented data into the CAPN infrasound

prediction model can significantly improve the infrasound prediction accuracy.
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Fig. 11. Comparison of diagnostic accuracy after sample augmentation.
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Table 3 shows a comparison of the classification performance of eight methods for
infrasound signals. The experimental results indicate that TimeGAN-CAPN achieves the best
overall classification Precision, reaching 84.62 %. In addition, TimeGAN-CAPN also
significantly outperforms the other seven classification methods in terms of F1-score and Recall,

with values of 86.02 % and 87.26 %, respectively.

Table 3. Comparison of classification results for four types of infrasound events by different

classification networks [%].

Method F1-score Recall Precision
CAPN 80.07 79.62 79.16
GAN-CAPN 74.39 73.68 73.07
LSTM-CAPN 76.27 75.89 75.25
GRU-CAPN 80.29 79.68 78.97
Transformer-CAPN 80.76 80.92 79.13
WGAN-CAPN 81.96 82.17 80.86
DCGAN-CAPN 83.11 84.06 81.71
TimeGAN-CAPN 86.02 87.26 84.62

Further analysis shows that, compared to other classification networks, TimeGAN-CAPN
exhibits higher classification accuracy and more stable classification performance in infrasound
classification. To provide a comprehensive evaluation of its performance, Fig. 12 presents the
ROC curve for different methods. From the figure, it is evident that the AUC value of
TimeGAN-CAPN reaches 0.8451, significantly higher than the other seven networks, further

validating its superior performance in the infrasound signal classification task.
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Fig. 12. ROC curve of different classification methods.

To analyze the infrasound recognition performance, eight classification models were
evaluated using 6-fold cross-validation to obtain the accuracy of real labels and predicted labels
from six validation runs. The confusion matrix for infrasound classification is shown in Fig. 13.
From the perspective of single-class classification performance, TimeGAN-CAPN
demonstrates significant advantages in classifying earthquake, tsunami, and volcanic
infrasound signals. This result thoroughly confirms the robustness and generalization ability of

the proposed method in handling different types of infrasound signals.
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Fig. 13. Confusion matrix for infrasound classification.

4. Conclusion and future work

To further enhance the accuracy of infrasound disaster prediction, this paper proposes the
TimeGAN-CAPN prediction model. The TimeGAN-CAPN model combines unsupervised and
supervised learning, where the autoencoder component provides an embedding space for
temporal features. The generative component operates within this embedding space to produce
high-quality sequential data. By augmenting the sample data, the model increases the
information content, and these new samples are then input into the CAPN to more effectively
capture class prototypes, further improving prediction performance. The quality and diversity
of the generated data are quantitatively and qualitatively assessed using the MMD metric and
visualization methods, demonstrating that TimeGAN-CAPN generates data that closely
approximates the original distribution. Comparative experiments highlight the superior
predictive performance of TimeGAN-CAPN.

Although the TimeGAN-CAPN model improves infrasound prediction accuracy, it does
not transform data into two-dimensional images as seen in traditional fault diagnosis models
due to the limited quantity and lack of periodicity in the data. As a result, the TimeGAN-CAPN
model is specifically tailored for infrasound data. Future research could explore the use of
transfer learning techniques to apply the trained model to different disaster datasets, thereby

improving the model’s generalizability.
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