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Analysis on Modal Distribution and Modal Density-Based Crossover 

Frequency in Cabin-Sized Enclosures 

Ziyu WANG (1)ORCID1, Liangfen DU (2)ORCID2, Guangzheng YU (1)*ORCID3
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In the sound field simulation of cabin-sized enclosures, the Schroeder frequency (SF) is still 

employed to estimate the crossover frequency (CF) that determines the validity ranges of wave-

based and geometrical acoustic methods. However, because cabin-sized enclosures exhibit distinct 

modal behaviors from typical medium- and large-scale rooms, the validity of SF in such enclosures 

has not been thoroughly validated. To systematically assess the applicability of SF in cabin-sized 

enclosures, this study introduces the modal density-based crossover frequency (MDCF). The 

MDCF employs the same dense modal criterion as SF. Its modal parameters, however, are derived 

from numerical eigenfrequency analysis. This contrasts with the SF formula, where these 

parameters are determined solely by room volume and reverberation time. Ten models are 

constructed for evaluation, grouped into two volume sets: 8 m³ (cabin-sized) and 80 m³ (common-

sized). Each set comprises five distinct geometrical shapes from rectangular models to simplified 

vehicle shapes. The results reveal that, for cabin-sized enclosures under low absorption boundary 

conditions, the MDCF is typically 70 Hz –150 Hz lower than SF; the discrepancies decrease to 20 

Hz –50 Hz in 80 m³ rooms. Furthermore, the MDCF varies with room shapes at a constant volume, 

whereas the SF remains nearly unchanged. These findings demonstrate that MDCF provides a 

more reliable CF estimation for rooms with irregular shapes, and highlights the importance of 

considering accurate modal parameters in acoustic analysis of cabin-sized models. 
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List of symbols 

𝑓𝑓SF Schroeder frequency 𝑓𝑓MDCF modal density-based crossover frequency 

𝑓𝑓𝑛𝑛 
the 𝑛𝑛 − th  eigenfrequency under rigid 
boundary 
(or the real part of 𝑛𝑛 − th  eigenfrequency 
𝑓𝑓𝑛𝑛,𝑐𝑐) 

𝑓𝑓𝑛𝑛,𝑐𝑐 the 𝑛𝑛 − th eigenfrequency 

𝑐𝑐0 speed of sound 𝜌𝜌 air density 

𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 modal orders along each axis 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 , 𝐿𝐿𝑧𝑧 room dimensions 

𝑉𝑉 volume 𝑆𝑆 total surface area 

𝐿𝐿 total edge length 𝑓𝑓𝑢𝑢  upper limit frequency 

𝑁𝑁𝑓𝑓 modal number 𝑁𝑁�𝑓𝑓 simplified modal number 

𝛥𝛥𝑓𝑓𝑛𝑛  eigenfrequency spacing 𝛥𝛥𝑓𝑓𝑛𝑛�  simplified eigenfrequency spacing 

𝛿𝛿 modal decay factor 𝐵𝐵𝐻𝐻𝐻𝐻 half-power bandwidth 

𝛿𝛿𝑛𝑛,𝑐𝑐 the 𝑛𝑛 − th modal decay factor 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐� the 𝑛𝑛 − th half-power bandwidth 

𝛿𝛿 simplified modal decay factor 𝐵𝐵�𝐻𝐻𝐻𝐻 simplified half-power bandwidth 

M modal overlap degree 𝑘𝑘 wavenumber 

𝑝𝑝 sound pressure 𝐊𝐊 stiffness matrix 

𝐌𝐌 mass matrix 𝐂𝐂 damping matrix 

𝑇𝑇60 reverberation time 𝛼𝛼 absorption coefficient 

𝜁𝜁 normalized boundary impedance, 𝜁𝜁 = 𝜁𝜁𝑖𝑖 + 𝑗𝑗𝜁𝜁𝑟𝑟  𝑍𝑍 boundary acoustic impedance 

1. Introduction 

In the study of sound field simulation and analysis for cabin-sized enclosures, the crossover 

frequency (CF) serves as a critical threshold that defines the optimal transition between wave-

based and geometrical acoustic methods (Kleiner, Tichy, 2014; Rougier, 2018; Siltanen et al., 

2010). Below the CF, the sound field is dominated by a limited set of discrete normal modes, where 

the wave-based methods such as the finite element method (FEM) can provide accurate predictions 

(Sakuma et al., 2014). Above the CF, the modal density increases, leading to a more even 

distribution of sound energy; therefore, geometrical acoustic methods – ray tracing method –

provide accurate predictions with greater computational efficiency (Savioja, Svensson, 2015; 

Savioja, Xiang, 2019). 
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In practice, CF is commonly estimated by the classical Schroeder frequency (SF) formula, 

which has been validated mainly in the medium- and large-scale sound fields (Southern et al., 2011, 

2013; Summers et al., 2004). Based on the statistic acoustic theory, the SF is determined by two 

parameters: the room volume 𝑉𝑉 , which describes the modal distribution behavior, and 

reverberation time 𝑇𝑇60, which characterize the decay rates of all modes (Schroeder, Kuttruff, 1962; 

Schroeder, 1987; 1996). Both the modal distribution and the modal decay properties serve as 

critical parameters for theoretically determining the CF, and the SF offers a convenient indicator 

for CF estimation (Brinkmann et al., 2019). 

However, the simplifications and assumptions of modal properties in the derivation of SF 

impose limitations. The simplified modal distribution formula – originally derived from the 

distribution of oblique modes in rectangular rooms – approximates the modal distribution of 

enclosures with different shapes solely through their volumes 𝑉𝑉 (Bolt, 1946; Morse, 1968); it not 

only undercounts modes but also neglects the effects of room geometry on modal distribution 

(Gunawan et al., 2018; Meissner, 2021). The reverberation time 𝑇𝑇60 , which characterizes the 

modal decay rate, is typically assumed to be frequency-independent value – estimated either from 

an average absorption coefficient in analytical simulation or from the 1 kHz one-third octave band 

in measurements – to yield a specific SF value (Kuttruff, 2016; Nélisse, Nicolas, 1997). Such a 

single global parameter 𝑇𝑇60, however, is insufficient to capture the decay behaviors of individual 

modes. Because the decay rate of each mode depends on how it interacts with the damping 

boundaries: modes that encounter more damping surfaces exhibit faster energy decay than those 

encountering fewer damping surfaces (Bastine et al., 2021; Zheng et al., 2021). For instance, in 

rectangular rooms, the oblique modes decay more rapidly than the axial and tangential modes, and 

similar variations are also observed in non-rectangular enclosures. 
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The limitations from the simplified modal parameters become more pronounced in 

cabin‑sized enclosures. In such enclosures, the number of modes within a given frequency band is 

limited and their distribution is sparse (Kleiner, Tichy, 2014; Meissner, 2017). Therefore, any 

underestimation using a volume-based formula can lead to substantial relative errors. Moreover, 

the premise of reverberation time 𝑇𝑇60 is often invalid in cabin-sized enclosures due to the rapid 

interaction of sound waves with damping boundaries, which causes faster energy decay (Ferreira 

et al., 2016; Rindel, 2015). As a result, these simplified modal parameters introduce significant 

errors into the modal analysis of cabin‑sized enclosures. Despite these limitations, the SF remains 

a reference for estimating the CF in several vehicle acoustics studies (Aretz, Vorländer, 2014b, 

2014a; Granier et al., 1996; Pinardi et al., 2021). Hence, it is necessary to reassess the validity of 

using SF to estimate CF, as its applicability in this context is insufficiently established. 

To address these issues, this study analyzes the modal characteristics of cabin-sized 

enclosures, and proposes the modal density-based crossover frequency (MDCF) for CF estimation 

using accurate modal parameters. Ten models – comprising two volume sets (8 m³ and 80 m³) and 

five distinct geometries per set – are simulated via FEM to obtain accurate eigenfrequencies and 

modal parameters. By comparing numerically derived modal spacing and bandwidth with 

analytical solutions, we quantify the discrepancies between MDCF with SF, and elucidate the 

mechanisms underlying these differences in cabin-sized enclosures. 

The paper is organized as follows. Section 2 introduces the research models, including the 

model shapes, boundary conditions, and numerical simulation setup. Section 3 reviews the 

analytical formulas and numerical simulations of modal parameters, details the derivation process 

of the SF and MDCF, and presents the relations between them. Section 4 compares the results 

between analytical (SF-based) and numerical (MDCF-based) modal parameters across different 
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geometries and boundary conditions, and further compares the MDCF and SF. Finally, Sec. 5 

concludes with the main findings and academic contributions of MDCF in vehicle acoustics studies. 

2. Research models  

The research models comprise two sets of proportionally scaled models with a volume ratio 

of 1:10, the small-scale set has a volume of 8 m³, representing vehicle cabins, while the large-scale 

set has a volume of 80 m³, representing ordinary meeting rooms. Each volume set contains five 

geometrical configurations: three rectangular rooms with dimension ratios (𝐿𝐿𝐿𝐿: 𝐿𝐿𝐿𝐿: 𝐿𝐿𝐿𝐿) as follows 

– Model A (1.00:3.00:4.00), Model B (1.00:1.50:2.50), and Model C (1.00:1.20:1.45) (Rindel, 

2021), and two chamfered models: Model D and Model E, created by applying diagonal cuts to 

Model B (similar dimensions to actual cabins). Figure 1 provides the exact dimensions and 

geometries for the five small-scale models (8 m3). 

 

Figure 1. Dimensions and geometries of five small-scale models. Rectangular models: Model 

A (1.00:3.00:4.00), Model B (1.00:1.50:2.50), Model C (1.00:1.20:1.45). Non-rectangular models: 

Model D (one oblique plane), Model E (two oblique planes). Dimensions are in millimeters [mm]. 

All interior surfaces are modeled as isotropic and homogeneous boundaries, with a uniform 

absorption coefficient 𝑎𝑎 ranging from 0.05 to 0.30. Boundary losses are implemented by locally 
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reacting boundaries with Robin boundary conditions (Zheng et al., 2021). 

Acoustic eigenmodes are obtained by solving the linearized Helmholtz equation under rigid 

or damping boundary conditions via the FEM, the calculation process will be detailed in the next 

section. The computational mesh element size is set to ℎ ≤ 𝜆𝜆min
5

, where 𝜆𝜆min = 0.0686 m 

corresponds to the wavelength at 1 kHz, ensuring a minimum of five elements per wavelength for 

simulation accuracy. 

3. Theory and methods  

Modal distribution and modal decay are fundamental properties of normal modes. This 

section first outlines the theoretical framework of modal theory and the analytical formulas for 

modal parameters in rectangular rooms, followed by the derivation of Schroeder frequency (SF). 

Based on this framework, the corresponding parameters for non-rectangular rooms are obtained 

through numerical eigenfrequency analysis. Subsequently, the modal density-based crossover 

frequency (MDCF) is introduced as an alternative estimation method for estimating the CF, and 

its differences from the SF formula are compared and discussed. 

3.1. Analytical solution of modal parameters and derivation of the Schroeder frequency 

For a rectangular room with rigid boundaries, the eigenfrequency formula is given by 

(Kuttruff, 2016): 

 𝑓𝑓𝑛𝑛 = 𝑐𝑐0
2
��𝑛𝑛𝑥𝑥

𝐿𝐿𝑥𝑥
�
2

+ �𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦
�
2

+ �𝑛𝑛𝑧𝑧
𝐿𝐿𝑧𝑧
�
2
, (1) 

where 𝑐𝑐0 is the speed of sound in air, 𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦, 𝐿𝐿𝑧𝑧 are the room dimensions, and 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 are 

non-negative integers representing the modal orders along each axis. Modes are classified 

according to their propagation direction: oblique modes (none of the 𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧  are zero, 
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representing three-dimensional volume propagation), tangential modes (one of the 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 is 

zero, indicating two-dimensional surface propagation), and axial modes (two of the 𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 are 

zero, corresponding to one-dimensional axial propagation) 

The modal number below an upper frequency 𝑓𝑓𝑢𝑢 in rectangular rooms is given by (Maa, 

1939): 

 𝑁𝑁𝑓𝑓(𝑓𝑓𝑢𝑢) = 4𝜋𝜋
3
𝑉𝑉 ⋅ �𝑓𝑓𝑢𝑢

𝑐𝑐0
�
3

+ 𝜋𝜋
4
𝑆𝑆 ⋅ �𝑓𝑓𝑢𝑢

𝑐𝑐0
�
2

+ 𝐿𝐿
8
⋅ 𝑓𝑓𝑢𝑢
𝑐𝑐0

, (2) 

where 𝑉𝑉, 𝑆𝑆, and 𝐿𝐿 represent the room volume, total surface area, and sum of the room edge 

lengths, respectively. Since the first volume-governed term dominates at high frequencies, Eq. (2) 

is commonly simplified as (Weyl, 1911): 

 𝑁𝑁�𝑓𝑓(𝑓𝑓𝑢𝑢) = 4𝜋𝜋
3
𝑉𝑉 ⋅ �𝑓𝑓𝑢𝑢

𝑐𝑐0
�
3
. (3) 

The eigenfrequency spacing, defined as the difference between consecutive eigenfrequencies, 

can also be expressed as the number of modes within per unit frequency range. Based on Eq. (3), 

the average eigenfrequency spacing is expressed as: 

 𝛥𝛥𝑓𝑓𝑛𝑛� = �𝑑𝑑𝑁𝑁
�𝑓𝑓(𝑓𝑓𝑢𝑢)

𝑑𝑑𝑓𝑓𝑢𝑢
�
−1

= 𝑐𝑐03

4𝜋𝜋𝜋𝜋𝑓𝑓𝑢𝑢2
. (4) 

Under non-rigid boundary conditions, modal energy decays over time. The decay rate is 

typically quantified by the decay factor 𝛿𝛿, following the relation of 𝐸𝐸(𝑡𝑡) = 𝐸𝐸0𝑒𝑒−2𝛿𝛿𝛿𝛿. The decay 

factor can be derived from the time required for the sound level decreases by 60 dB, known as 𝑇𝑇60. 

Thus, the decay factor is given by (Kuttruff, 2016): 

 𝛿𝛿 = 3 ln(10)
𝑇𝑇60

. (5) 

In the frequency region, the half-power bandwidth – defined as the frequency range where 

energy decays from peak to half-peak – is related to the decay factor by (Kuttruff, 2016): 
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 𝐵𝐵𝐻𝐻𝐻𝐻 = 𝛿𝛿
𝜋𝜋
. (6) 

By substituting the Eq. (5) into Eq. (6), the half-power bandwidth can be expressed as: 

 𝐵𝐵�𝐻𝐻𝐻𝐻 = 3 ln(10)
𝜋𝜋⋅𝑇𝑇60

. (7) 

The modal overlap degree is defined as the ratio of half-power bandwidth and eigenfrequency 

spacing, can be calculated as (Dance, Van Buuren, 2013): 

 𝑀𝑀 = 𝐵𝐵𝐻𝐻𝐻𝐻
𝛥𝛥𝑓𝑓𝑛𝑛

. (8) 

According to Schroeder’s study, when the modal overlap degree reaches or exceeds 3 – that 

is, when the eigenfrequencies spacing is less than one-third of the bandwidth –it represents the 

dense modal distribution (Schroeder, 1996). This criterion can be reformulated as the condition 

where the half-power bandwidth equals three times of eigenfrequency spacing, expressed as: 

 𝐵𝐵𝐻𝐻𝐻𝐻 = 3 × Δ𝑓𝑓𝑛𝑛. (9) 

By substituting the expressions for eigenfrequency spacing from Eq. (4) and half-power 

bandwidth from Eq. (7), Schroeder frequency is expressed as: 

 𝑓𝑓SF = 2065.8�𝑇𝑇60
𝑉𝑉
≈ 2000�𝑇𝑇60

𝑉𝑉
. (10) 

Therefore, the SF provides a general formula, based on room volume 𝑉𝑉 and decay parameter 

𝑇𝑇60, to estimate the CF, which marks the transition from discrete to dense modal distribution. 

3.2. Numerical modal analysis and the definition of modal density-based crossover frequency 

However, in a non-rectangular enclosure with complex boundary conditions, the analytical 

eigenfrequency formula Eq. (1) is no longer applicable. In practice, the FEM and other numerical 

simulation methods can provide a viable and efficient way to predict the eigenfrequency, as 
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obtaining exact eigenvalues by measurements is often impractical. The FEM solves for the 

eigenfunctions by discretizing the continuous governing equations (Sakuma et al., 2014). All 

models in this study are analyzed using the FEM to ensure comparability. 

The governing equation (Helmholtz equation) in acoustic eigenmode analysis takes the form: 

 𝛻𝛻2𝑝𝑝 + 𝑘𝑘2𝑝𝑝 = 0, (11) 

where 𝑘𝑘 = 𝜔𝜔
𝑐𝑐0

  is the wavenumber. Through the Galerkin weighted residual method, the 

continuous equation Eq. (11) is discretized into a generalized matrix eigenproblem, with 

eigenfunctions 𝛷𝛷 and corresponding eigenvalues 𝑘𝑘： 

 [𝐊𝐊 − 𝑘𝑘2𝐌𝐌]𝛷𝛷 = 0, (12) 

where 𝐾𝐾𝑖𝑖𝑖𝑖 = ∫ ∇𝐷𝐷𝑖𝑖 ⋅ ∇𝐷𝐷𝑗𝑗Ω 𝑑𝑑Ω is element of stiffness matrix 𝐊𝐊, and 𝑀𝑀𝑖𝑖𝑖𝑖 = ∫ 𝐷𝐷𝑖𝑖𝐷𝐷𝑗𝑗Ω 𝑑𝑑Ω is element 

of the mass matrix 𝐌𝐌. And 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  represent shape functions for nodes 𝑖𝑖 and 𝑗𝑗, and Ω is 

the computational volume domain.  

Based on the numerical eigenfrequency solutions, the eigenfrequency spacing is calculated 

as the difference between consecutive eigenfrequencies. Compared to Eq. (4), this approach is the 

fundamental and yields randomly fluctuating results rather than an averaged trend: 

 Δ𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1. (13) 

Under damping boundary conditions with a specific acoustic impedance 𝑍𝑍, the governing 

equation is modified as: 

 (𝑲𝑲− 𝑘𝑘2𝑴𝑴 + 𝑪𝑪)𝛷𝛷 = 0, (14) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖
𝑍𝑍 ∫ 𝐷𝐷𝑖𝑖𝐷𝐷𝑗𝑗𝑆𝑆 𝑑𝑑𝑑𝑑 is element of the damping matrix 𝑪𝑪, 𝜌𝜌 is the ambient air density, and 

𝑆𝑆 is the computational surface domain. Consequently, the n-th eigenfrequency is expressed as: 

 𝑓𝑓𝑛𝑛,𝑐𝑐 = 𝑓𝑓𝑛𝑛 − 𝑖𝑖 𝛿𝛿𝑛𝑛,𝑐𝑐
2𝜋𝜋

, (15) 
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where the imaginary part represents the mode-specific decay factor 𝛿𝛿𝑛𝑛,𝑐𝑐, which varies with the 

modal propagation direction and boundary conditions. Substituting 𝛿𝛿𝑛𝑛,𝑐𝑐 into Eq. (6) yields the 

mode-specific half-power bandwidth: 

 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐� = 𝛿𝛿𝑛𝑛,𝑐𝑐
𝜋𝜋

. (16)  

Applying the same criterion: ‘three modes within a half-power bandwidth 𝐵𝐵𝐻𝐻𝐻𝐻’, the modal 

density-based crossover frequency (MDCF) is defined from the numerical eigenfrequency 

solutions. As illustrated in Fig. 2, for each eigenfrequency 𝑓𝑓𝑛𝑛,𝑐𝑐
(𝑖𝑖), the number of modes 𝑁𝑁𝑓𝑓

(𝑖𝑖) within 

its corresponding half-power bandwidth 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐
(𝑖𝑖)� is counted. The MDCF is identified as the 

lowest eigenfrequency for which the half-power bandwidth contains three or more modes, and all 

subsequent frequencies also satisfy this condition. The half-power bandwidth and its center 

frequency correspond to the imaginary and real parts of the complex eigenfrequency in Eq. (15). 

 

  
Figure 2. Definition of modal density-based crossover frequency: the MDCF is the lowest 

eigenfrequency whose half-power bandwidth contains three or more modes, with all subsequent 

frequencies also meeting this criterion. 

 

As shown in Fig. 2, light gray blocks represent bands that do not satisfy the dense modal 

criterion, such as 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐
(1)�; while dark gray blocks satisfy this criterion. Since the 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐

(𝑘𝑘)� 
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centered at the eigenfrequency 𝑓𝑓𝑛𝑛,𝑐𝑐
(𝑘𝑘) contains three modes of 𝑁𝑁𝑓𝑓

(𝑘𝑘), and all subsequent frequency 

bands also satisfy this condition, it follows that 𝑓𝑓MDCF = 𝑓𝑓𝑛𝑛,𝑐𝑐
(𝑘𝑘). 

3.3. Comparison of Schroeder frequency and modal density-based crossover frequency 

Both of SF and MDCF employ ‘3-mode within a 𝐵𝐵𝐻𝐻𝐻𝐻 ’ criterion, but they differ in the 

employed parameters and derivation process. Table 1 summarizes the modal parameters used in 

the derivation of SF and MDCF. 

Table 1. Modal parameters employed in derivation process of SF and MDCF’ 

Parameter Schroeder frequency Modal density-based crossover frequency 

Eigenfrequency 

spacing 

𝛥𝛥𝑓𝑓𝑛𝑛� = 𝑐𝑐03

4𝜋𝜋𝜋𝜋𝑓𝑓𝑢𝑢2
, simplified formulas (rectangular 

shape) 

Δ𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1, numerical results (any 

geometrical shapes) 

Half-power 

bandwidth 
𝐵𝐵�𝐻𝐻𝐻𝐻 = 3 ln(10)

𝜋𝜋⋅𝑇𝑇60
, with global decay 𝑇𝑇60 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐� = 𝛿𝛿𝑛𝑛,𝑐𝑐

𝜋𝜋
, mode-dependent 

4. Results 

The modal parameters obtained from numerical simulations and analytical formulas are 

compared in the following section. 

4.1. Eigenmode distributions under rigid walls 

Figure 3 presents the comparison of eigenfrequency spacing under rigid boundary condition. 

The numerical results Δ𝑓𝑓𝑛𝑛 from Eq. (13) in 8 m³ and 80 m³ rooms are shown as green- and blue-

marked lines, respectively; while analytical results 𝛥𝛥𝑓𝑓𝑛𝑛�  from Eq. (4) are presented by black 

dashed and dotted lines. The gray shaded areas indicate the discrepancies between the two methods. 
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Figure 3. Eigenfrequency spacing from numerical results Δ𝑓𝑓𝑛𝑛 from Eq. (13) and analytical 

results 𝛥𝛥𝑓𝑓𝑛𝑛�  from Eq. (4) in 8 m³ rooms (green marked lines, black dashed lines) and 80 m³ rooms 

(blue marked lines, black dotted lines). Gray regions denote discrepancies between them. 

Overall, discrepancies are observed across all models, and are more pronounced in small-

scale rooms (8 m³). In the low-frequency range, the eigenfrequency spacings obtained from the 

analytical results are higher than that from the numerical results, and gradually consistent. For 

example, below 200 Hz, the average difference between the two methods range from 10 Hz–20 

Hz in 8 m³ rooms; and from 3 Hz–10 Hz in 80 m³ rooms. 

Regarding the shape-dependent discrepancies in 8 m³ rooms, Model A exhibits the largest 

deviation, with differences up to 20 Hz. Models B and E also show substantial discrepancies, with 

maximum deviations of 10 Hz–15 Hz. Models C and D display smaller differences, with deviations 

around 10 Hz. These results indicate that the analytical method becomes less accurate in small-

scale enclosures, ultimately affecting the analysis of modal overlap and crossover frequency. 

4.2. Half-power bandwidth under damping boundaries 

Figure 4 compares the half-power bandwidths under a uniform absorption boundary condition 
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(α = 0.20). The numerical bandwidths 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,c� from Eq. (16) for 8 m³ and 80 m³ rooms are 

presented by green- and blue-marked lines, respectively; and analytical results 𝐵𝐵�𝐻𝐻𝐻𝐻 from Eq. (7) 

are shown as black dashed and dotted lines. The gray areas quantify the deviations between the 

two methods. 

 

Figure 4. Half-power bandwidth of numerical results 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐� from Eq. (16) and analytical 

results 𝐵𝐵�𝐻𝐻𝐻𝐻 from Eq. (7) in 8 m³ rooms (green marked lines, black dashed lines) rooms and 80 

m³ rooms (blue marked lines, black dotted lines). The boundary absorption coefficient is 0.20, and 

𝑇𝑇60  in analytical 𝐵𝐵�𝐻𝐻𝐻𝐻  is obtained by Eyring 𝑇𝑇60  formula. Gray regions denote discrepancies 

between them. 

Across all models, the bandwidths obtained numerically are consistently higher than those 

from the analytical formula, and this discrepancy is more pronounced in 8 m³ rooms. For instance, 

in 8 m³ rooms, deviations exceed 10 Hz at certain eigenfrequencies; whereas the discrepancy is 

narrower in 80 m³ rooms. Moreover, the numerical results exhibit frequency-dependent variations: 

at low frequencies, they show a scattered distribution due to varying modal damping; whereas at 

high frequencies, they stabilize to a maximum owing to the dominance of oblique modes. In 

contrast, the analytical results remain constant across the frequency range. 
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As for the shape-dependent discrepancies in 8 m³ rooms, Model C has the largest deviation 

(nearly 15 Hz), followed by Models B and E (up to 10 Hz), and Model D (slightly less than 10 

Hz). Model A exhibits the smallest discrepancy. These results demonstrate that the analytical 

formula underestimates the modal damping, and that the discrepancies between numerical and 

analytical results among different model shapes are more pronounced in small-scale enclosures. 

4.3. Modal overlap degree 

The ratio of half-power bandwidth to eigenfrequency spacing is the modal overlap degree, 

which determines the final crossover frequency. Figure 5 compares the modal overlap degree under 

the boundary condition of uniform absorption α =  0.20. Green and blue lines represent 𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐�
𝛥𝛥𝑓𝑓𝑛𝑛

 

obtained by numerical results for 8 m³ and 80 m³ rooms, respectively; while black dashed and 

dotted lines show 𝐵𝐵
�𝐻𝐻𝐻𝐻
𝛥𝛥𝑓𝑓𝑛𝑛�

 obtained by analytical formula. Gray areas indicate where modal overlap 

degree reach or exceed three. Vertical solid and dashed lines indicate the MDCF and SF for 8 m³ 

rooms (green) and 80 m³ rooms (blue). Above the MDCF and SF, the modal overlap degree 

exceeds three. 
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Figure 5. The modal overlap degree of numerical modal parameters (𝐵𝐵𝐻𝐻𝐻𝐻�𝑓𝑓𝑛𝑛,𝑐𝑐�
𝛥𝛥𝑓𝑓𝑛𝑛

) and analytical 

modal parameters (𝐵𝐵
�𝐻𝐻𝐻𝐻
𝛥𝛥𝑓𝑓𝑛𝑛�

) in 8 m³ rooms (green marked lines, black dashed lines) and 80 m³ rooms 

(blue marked lines, black dotted lines). The boundary absorption coefficient is 0.20. The vertical 

lines represent the MDCF (solid lines) and SF (dashed lines) in 8 m³ rooms (green) and 80 m³ 

rooms (blue), indicating the frequency beyond which the bandwidth contains more than 3 modes. 

 

This analysis is critical for determining the MDCF and SF. Overall, modal overlap degree 

from numerical results is consistently higher than that from analytical results under current 

boundary condition; correspondingly, MDCF is generally lower than the SF in all models except 

Model C, where a sudden drop in modal bandwidth containing fewer than three modes results in a 

higher MDCF.  

Notably, the difference between MDCF and SF is more pronounced in 8 m³ rooms. For 

example, Model D exhibits the largest gap, around 140 Hz (MDCF≈220 Hz and SF≈360 Hz), 

followed by Model E is approximate 100 Hz, Model B is around 60 Hz, and Model-A is around 
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40 Hz. In contrast, 80 m³ rooms show narrower gaps between MDCF and SF, around 15–40 Hz. 

Based on this methodology, results for other boundary conditions could be derived similarly and 

will be presented in the next section. 

4.4. Modal density-based crossover frequency 

Based on the forefront analysis, the MDCF can be determined. Figure 6 compares MDCF 

with SF in 8 m³ and 80 m³ rooms for the boundary absorption coefficients in the range of [0.05, 

0.30]. The MDCF is represented by marked lines and SF is represented by dashed lines. 

 
Figure 6. The modal density-based crossover frequency (MDCF) and Schroeder frequency 

(SF) in 8 m³ (green solid- and dashed-lines) and 80 m³ (blue solid- and dashed-lines) rooms, when 

boundary absorption coefficient is from 0.05 to 0.30. 

 

The results show that the MDCF is generally lower than the SF in most cases. Notably, larger 

discrepancies are observed in 8 m³ rooms than 80 m³ rooms. For instance, at α = 0.20, the 

differences of MDCF and SF exhibit an average of 55 Hz and peak of 145 Hz in 8 m³ rooms, 

whereas in 80 m³ rooms, the average gap is 25 Hz, and the peak gap is 50 Hz. As analyzed above, 
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discrepancies in eigenfrequency spacing and half-power bandwidth between numerical and 

analytical results lead to differences between the MDCF and the SF These include: the MDCF 

accounts for actual modal distribution, considering all simulated eigenmodes, and the SF relies on 

volume-related eigenmodes that overestimate eigenfrequency spacing, particularly in small-scale 

rooms; and numerical 𝐵𝐵𝐻𝐻𝐻𝐻 is consistently wider than analytical predictions, with this discrepancy 

amplified in smaller enclosures. These findings explain the mechanisms underlying the 

discrepancies between the SF and the MDCF when estimating the CF, and quantitatively specify 

these differences. 

5. Conclusion 

This study investigates modal characteristics of cabin-sized enclosures by analyzing two key 

parameters that determine the crossover frequency (CF) – modal distribution and modal decay – 

using both numerical simulations and analytical formulations. The modal density-based crossover 

frequency (MDCF), derived from numerical simulations, is proposed and compared with the 

Schroeder frequency (SF). Based on ten models with two volumes and five different geometrical 

shapes, the results show that the MDCF varies with room shapes at a constant volume. Furthermore, 

the MDCF is lower than SF approximately 70 Hz–150 Hz in cabin-sized rooms; while the 

differences decrease to 20 Hz–50 Hz in larger rooms. Consequently, MDCF provides a more 

reliable CF estimation for irregularly shaped rooms, and highlights the necessity of incorporating 

accurate modal parameters in the modal analysis of cabin-sized enclosures. Additionally, the 

difference in modal decay rates across modal types is analyzed, providing theoretical insights 

relevant to low-frequency equalization. Future work should include experimental validation to 

deepen the understanding of modal properties in cabin-sized enclosures. 
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