10.1515/aoa-2016-0045
Acoustic Scattering of 3D Complex Systems Having Random Rough Surfaces by Scalar Integral Equations
References
Arfken G.B., Weber H.J., Harris F.E. (2013), Mathematical Methods for Physicists, 7th edition, Academic Press, USA.
Burton A.J., Miller G.F. (1971), The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. Roy. Soc. Lond., 323, 201–210.
Chowdhury N.M.A., Takada J.I., Hirose M. (2004), 3D scalar-formulation of IE-MEI for acoustic scattering, IEEE Conf. Antennas Propag. Soc. Int. Symp., 3, 2251–2254.
Hanninen I., Taskinen M., Sarvas J. (2006), Singularity substraction formulaes for surface integral equations with rwg, rooftop and hybrid basis functions, Progr. Electromag. Res., 63, 243–278.
Huacasi W., Mansur W.J., Azevedo J.P.S. (2003), A novel hypersingular B.E.M. formulation for three-dimensional potential problems, J. of the Braz. Soc. of Mech. Sci. & Eng., 25, 364–372.
Iturarán-Viveros U., Sánchez-Sesna F.J., Luzón F. (2007), Boundary element simulation of scattering of elastic waves by 3D cracks, J. Appl. Gephys., 64, 70–82.
Jun L., Beer G., Meek J.J. (1985), Efficient evaluation of integrals of order 1/r, 1/r2, 1/r3 using a gaussian quadrature, Eng. Analysis, 2, 118–123.
Junger M.C., Feit D. (2004), Sound, structures, and their Interaction, MIT Press, USA.
Kirkup S. (1998), The boundary element method in acoustics, Integrated Sound Software.
Li S., Huang Q. (2011), A new fast multipole boundary element method for two-dimensional acoustic problems, Comp. Meth. Appl. Mech. Eng., 200, 1333–1340.
Maradudin A.A., Méndez E.R., Michel T. (1990), Enhanced backscattering of light from a random grating, Ann. Phys., 203, 255–307.
Mendoza-Suárez A., Méndez E.R. (1977), Light scattering by a reentrant fractal surface, Appl. Opt., 36, 3521–3531.
Mendoza-Suárez A., Pérez-Aguilar H. (2015), Optical response of a photonic crystal waveguide that includes a dispersive left-handed material, Photonic. Nanostruct., 14, 93–100.
Mendoza-Suárez A., Corona U.R., Luna R.E. (2004), Effects of wall random roughness on te and tm modes in a hollow conducting waveguide, Opt. Commun., 238, 291–299.
Mendoza-Suárez A., Villa-Villa F., Gaspar-Armenta J.A. (2006), Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one and two-dimensional photonic crystals, J. Opt. Soc. Am. B, 23, 2249–2256.
Mendoza-Suárez A., Villa-Villa F., Gaspar-Armenta J.A. (2007), Band structure of two-dimensional photonic crystals that include dispersive left-handed materials and dielectrics in the unit cell, J. Opt. Soc. Am. B, 24, 3091–3098.
Mendoza-Suárez A., Pérez-Aguilar H., Villa-Villa F. (2011), Optical response of a perfect conductor waveguide that behaves as a photonic crystal, Prog. Electromagn. Res., 121, 433–452.
Morse P.M., Ingard K.U. (1968), Theoretical acoustics, Princeton University Press, USA.
Pedersen H.A., Sánches-Sesma F.J., Campillo M. (1994), Three-dimensional scattering by two-dimensional topologies, Bulletin of the Seismological Society of America, 84, 1169–1183.
Pérez-Aguilar H., Mendoza-Suárez A., Tututi E., Herrera-Gonzalez I. (2013), Chaotic behavior of a quantum waveguide, Physica B, 411, 93–98.
Piscoya R., Ochmann M. (2014), Acoustical boundary elements: theory and virtual experiments, Archives Acoustics, 39, 4, 453–465.
Pointer T., Liu E., Hudson J. (1998), Numerical modelling of seismic waves scattered by hydrofractures: application of indirect boundary element method, Geophys. J. Int., 135, 289–303.
Tadeu A.J.B., Goginho L., Santos P. (2001), Performance of the BEM solution in 3D acoustic wave scattering, Adv. Eng. Soft., 32, 629–639.
Tong M.S., Chew W.C. (2010), Novel approach for evaluating hypersingular and strongly singular surface integrals in electromagnetics, IEEE Trans. Antenn. Prop., 58, 3593–3601.
Ursell F. (1973), On the exterior problems of acoustics, Proc. Camb. Phil. Soc., 74, 117–125.
Zaman S.I. (2000), A comprehensive review of boundary integral formulations of acoustic scattering problems, Sci. Tech. Special Review, pp. 281–310.
DOI: 10.1515/aoa-2016-0045