10.24425/aoa.2019.128489
An Improved MSA Model for Evaluating the Sound Transmission Loss of a Rectangular Plate for Diffuse Field Incidence
References
Andresen K. (1999), Underwater noise from ship hulls, Proceedings of International Conference on Noise and Vibration in the Marine Environment, pp. 1–22, London.
Arenas J.P. (2003), On the vibration analysis of rectangular clamped plates using the virtual work principle, Journal of Sound and Vibration, 266, 912-918.
Bruneau M. (2006), Fundamentals of Acoustics, ISTE Ltd Press, London.
Callister J.R., George A.R., Freeman G.E. (1999), An empirical scheme to predict the sound transmission loss of single-thickness panels, Journal of Sound and Vibration, 222, 145–151.
Davies H.G., (1971), Low frequency random excitation of water-loaded rectangular plates, Journal of Sound and Vibration, 15, 107–126.
Engineering System International (ESI) Group, (2012), VA One 2012, Validation and QA Document, p. 52.
Fahy F, Gardonio P. (2006), Sound and structural vibration: radiation, transmission and response, 2nd edition, Academic Press, London.
Fahy F. (1995), The vibroacoustic reciprocity principle and applications to noise control, Acustica, 81, 544–558.
Kozien M.S. (2005), Hybrid method of evaluation of sounds radiated by vibrating surface elements, Journal of Theoretical and Applied Mechanics, 43, 1, 119–133.
Kozien M.S. (2009), Acoustic intensity vector generated by vibrating set of small areas with random amplitudes, Journal of Theoretical and Applied Mechanics, 47, 2, 411–420.
Leppington F.G, Broadbent E.G, Heron K.H. (1982), The acoustic radiation efficiency of rectangular panels, Proceedings of the Royal Society of London, A 382, pp.245–271, London.
Putra A, Thompson D.J. (2010), Sound radiation from rectangular baffled and unbaffled plates, Applied Acoustics, 71, 1113–1125.
Sedov M.S. (1964), The mechanism of transmission of a sound through a thin plate of the finite size, Proceedings of the Universities. Series: Construction and Architecture, No.7, pp. 67–73, Russian.
Sedov M.S. (1990), Theory of inertial sound transmission through barrier constructions, Proceedings of the Universities. Series: Construction and Architecture, No.2, pp. 37–42, Russian.
Sgard F, Atalla N, Nicolas J. (2000), A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings, Journal of Acoustic Society of America, 108, 2865–2872.
Sharp B.H. (1978), Prediction methods for the sound transmission of building elements, Noise Control Engineering, 11, 53–63.
Takahashi D. (1995), Effects of panel boundedness in sound transmission problems, Journal of Acoustic Society of America, 98, 2598–2606.
Vigran T.E. (2008), Building Acoustics, Taylor & Francis Press, London.
Wallace C.E. (1972), Radiation Resistance of a rectangular panel, Journal of the Acoustical Society of America, 51, 946–952.
Wallace C.E. (1972), Radiation resistance of a rectangular panel, Journal of Acoustic Society of America, 51, 946–952.
Xie G, Thompson D.J, Jones C.J.C. (2005), The radiation efficiency of baffled plates and strips, Journal of Sound and Vibration, 280, 181–209.
Zhang W., Wang A., Vlahopoulos N., Wu K. (2003), High-frequency vibration analysis of thin elastic plates under heavy fluid loading by an energy finite element formulation, Journal of Sound and Vibration, 263, 1, 21–46.
DOI: 10.24425/aoa.2019.128489