10.24425/aoa.2024.148777
A Hybrid Finite Element Method – Kirchhoff Approximation Method for Modeling Acoustic Scattering from an Underwater Vehicle Model with Alberich Coatings with Periodic Internal Cavities
References
Abawi A.T. (2016), Kirchhoff scattering from nonpenetrable targets modeled as an assembly of triangular facets, The Acoustical Society of America, 140(3): 1878–1886, doi: 10.1121/1.4962735.
Chen X., Luo Y. (2018), Simulation of scattering acoustic field of underwater target in low frequency based on ANSYS and SYSNOISE [in Chinese], Journal of Ordnance Equipment Engineering, 39(5): 103–107, doi: 10.11809/bqzbgcxb2018.05.022.
Esfahani I.C., Ji S., Sun H. (2023), A drop-onmicropillars (DOM) based acoustic wave viscometer for high viscosity liquid measurement, IEEE Sensors Journal, doi: 10.1109/JSEN.2023.3309757.
Esfahani I.C., Sun H. (2023), A droplet-based micropillar-enhanced acoustic wave (μPAW) device for viscosity measurement, Sensors and Actuators A: Physical, 350: 114121, doi: 10.1016/j.sna.2022.114121.
Fan J., Tang W.L. (1999), The planar element method for computing target strength (TS) of sonar [in Chinese], Proceedings of the Acoustical Society of China 1999 Youth Conference, pp. 40–41.
Fan J., Tang W.L., Zhuo L.K. (2012), Planar elements methods for forecasting the echo characteristics from sonar targets, Ship Mechanics, 16(1–2): 171–180, doi: 10.3969/j.issn.1007-7294.2012.01.020.
Fan J., Zhuo L.K. (2006), Graphical acoustics computing method for echo characteristics calculation of underwater targets, Acta Acustica, 31(6): 511–516, doi: 10.3321/j.issn:0371-0025.2006.06.006.
Feng X.L., Chen N.R., Li X.W., Li J. (2018), Analyzing the target strength of Benchmark submarine by boundary element method at low and middle frequencies [in Chinese], Technical Acoustic, 37(05): 418–424, doi: 10.16300/j.cnki.1000-3630.2018.05.003.
Huang L.Z., Xiao Y., Wen J.H., Yang H.B., Wen X.S. (2015), Analysis of decoupling mechanism of an acoustic coating layer with horizontal cylindrical cavities [in Chinese], Acta Physica Sinica, 64(15): 154301, doi: 10.7498/aps.64.154301.
Lavia E., Gonzalez J.D., Blanc S. (2018), Modelling high-frequency backscattering from a mesh of curved surfaces using Kirchhoff Approximation, Journal of Theoretical and Computational Acoustics, 27(04): 17, doi: 10.1142/S2591728518500573.
Lee K., Seong W. (2009), Time-domain Kirchhoff model for acoustic scattering from an impedance polygon facet, The Acoustical Society of America, 126(1): 14–21, doi: 10.1121/1.3141887.
Liu B. (2020), Research on acoustic scattering characteristics of typical structures of MUUV [in Chinese], Shanghai Jiao Tong University, doi: 10.27307/d.cnki.gsjtu.2020.002589.
Liu H., Peng Z.L., Fan J., Wu K. (2019), Numerical and experimental research on acoustic scattering time-frequency characteristics of dock landing ship [in Chinese], Technical Acoustics, 38(02): 147–152, doi: 10.16300/j.cnki.1000-3630.2019.02.006.
Liu J.W., Peng Z.L., Fan J., Liu Y., Kong H.M. (2023), Acoustic scattering prediction method of underwater vehicles based on slice-parameterized multihighlight model, Acta Armamentarii, 44(02): 517–525, doi: 10.12382/bgxb.2021.0764.
Lu D. (2014), Researches on acoustic scattering of elastic target on finite element methods [in Chinese], Harbin Engineering University.
Marston P.L., Sun N.H. (1995), Backscattering near the coincidence frequency of a thin cylindrical shell: Surface wave properties from elasticity theory and an approximate ray synthesis, The Acoustical Society of America, 92(6): 777–783, doi: 10.1121/1.412124.
Nell C.W., Gilroy L.E. (2003), An improved BASIS model for the BeTSSi submarine, DRDC Atlantic TR, Technical report.
Pignier J.N., O’Reilly J.C., Boij S. (2015), A Kirchhoff approximation-based numerical method to compute multiple acoustic scattering of a moving source, Applied Acoustics, 96: 108–117, doi: 10.1016/j.apacoust.2015.03.016.
Tong Y.Z., Fan J., Wang B. (2020), Application of Floquet-Bloch theory in dipersion curve calculation [in Chinese], Technical Acoustics, 39(01): 11–14, doi: 10.16300/j.cnki.1000-3630.2020.01.002.
Wang W.H.,Wang B., Fan J., Zhou J. (2021), An iterative planar elements method for calculating multiple acoustic scattering from concave targets, Proceedings of the 18th Symposium on Underwater Noise of Ships, pp. 121–126, doi: 10.26914/c.cnkihy.2021.056714.
Wei K.N., Li W., Lei M., Chai Y.B. (2013), Simulation research on acoustic scattering characteristics of underwater targets based on boundary element method [in Chinese], Proceedings of the Fourteenth Symposium on Underwater Noise of Ships, pp. 452–462.
Witos F. (2019), Properties of amplitude distributions of acoustic emission signals generated in pressure vessel during testing, Archives of Acoustics, 44(3): 493–503, doi: 10.24425/aoa.2019.129264.
Xu H.T., An J.Y., Liu C.F. (2004), Acoustic characteristics of anechoic coatings containing air cavities in water [in Chinese], Technical Acoustics, 23(z1): 345–347, doi: 10.3969/j.issn.1000-3630.2004.z1.101.
Xu Z.C., Zhang M.M., Wang L. (2015), Numerical simulation of acoustic scattering at low frequency for the BeTSSi submarine [in Chinese], Computer & Digital Engineering, 43(04): 551–553+575, doi: 10.3969/j.issn1672-9722.2015.04.003.
Yao X.L., Zhang Y., Qian D.J., Huang C., Zhang H.H. (2007), Characteristics analysis of acoustic insulation and decoupled tiles by FEM and experiment [in Chinese], Chinese Journal of Ship Research, 2(6): 9–15, doi: 10.3969/j.issn.1673-3185.2007.06.003.
Zheng G.Y., Fan J., Tang W.L. (2011), A modified planar elements method considering occlusion and secondary scattering [in Chinese], Acta Acustica, 36(4): 377–383, doi: 10.15949/j.cnki.0371-0025.2011.04.010.
DOI: 10.24425/aoa.2024.148777