**39**, 4, pp. 569-582, 2014

**10.2478/aoa-2014-0061**

### Circular Radon Transform Inversion Technique in Synthetic Aperture Ultrasound Imaging: an Ultrasound Phantom Evaluation

**Keywords**: synthetic aperture focusing method; circular Radon Transform; delay-and-sum beamforming; range migration algorithm.

**Full Text:**PDF

#### References

Agranovsky M.L., Quinto E.T. (1996), Injectivity sets for the Radon transform over circles and

complete systems of radial functions, J. Funct. Anal., 139, 383–413.

Cafforio C., Prati C., Rocca F. (1991), SAR data focusing using seismic migration techniques,

IEEE Trans. Aerosp. Electron. Syst., 27, 194–207.

Cooley C., Robinson B. (1994), Synthetic focus imaging using partial datasets, Proc. 1994 IEEE

Ultrason. Symp., vol. 3, 1539–1542.

Corl P.D., Grant P.M., Kino G. (1978), A Digital Synthetic Focus Acoustic Imaging System for

NDE, Proc. 1978 IEEE Ultrason. Symp., 263–268.

Cormack A.M. (1963), Representation of a function by its line integrals, with some radiological

applications, J. Appl. Phys., 34, 9, 2722–2727.

Cormack A.M. (1964), Representation of a function by its line integrals, with some radiological

applications. II, J. Appl. Phys., 35, 10, 2908–2913.

Danicki E., Tasinkevych Y. (2012), Acoustical Imaging, vol. 31, Chap. Beam-forming electrostric-

tive matrix, Springer, 363–369.

Ehrenpreis L. (2003), The Universality of the Radon Transform, Chap. 1.7, Clarendon Press

Oxford, 87.

Gel’fand I.M., Shilov G.E. (1964), Generalized Functions, Chap. III, New York: Academic Press,

Karaman M., Li P.C., O’Donnell M. (1995), Synthetic aperture imaging for small scale systems,

IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 42, 3, 429–442.

Lebedev N.N. (1957a), Special Functions and Their application (in Polish), Chap. V, PWN

Warsaw, 126.

Lebedev N.N. (1957b), Special Functions and Their application (in Polish), Chap. V, PWN

Warsaw, 130.

Lockwood G.R., Talman J.R., Brunke S.S. (1998), Real-time 3-D ultrasound imaging using

sparse synthetic aperture beamforming, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 45,

, 980–988.

Milman A.S. (1993), SAR imaging by ω −k migration, Int. J. Remote Sens., 14, 10, 1965–1979.

Moon S. (2014), On the determination of a function from an elliptical Radon transform, Journal

of Mathematical Analysis and Applications, 416, 2, 724–734.

Moreira A. (1992), Real-time synthetic aperture radar (SAR) processing with a new subaperture

approach, IEEE Trans. Geosci. Remote Sens., 30, 4, 714–722.

Nagai K. (1985), A New Synthetic-Aperture Focusing Method for Ultrasonic B-Scan Imaging by

the Fourier Transform, IEEE Trans. Sonics Ultrason., 32, 4, 531–536.

Nikolov S., Gammelmark K., Jensen J. (1999), Recursive ultrasound imaging, Proc. 1999 IEEE

Ultrason. Symp., vol. 2, 1621–1625.

Norton S.J. (1980), Reconstruction of a reflectivity field from line integrals over circular paths,

J. Acoust. Soc. Am., 67, 3, 853–863.

O’Donnell M., Thomas L.J. (1992), Efficient synthetic aperture imaging from a circular aperture

with possible application to catheter-based imaging, IEEE Trans. Ultrason., Ferroelectr. Freq.

Contr., 36, 3, 366–380.

Opieli´nski K.J., Gudra T. (2001), Industrial and Biological Tomography - Theoretical Basis and

Applications, Chap. Ultrasonic transmission tomography, Electrotechnical Institute, Warsaw,

–276.

Ozaki Y., Sumitani H., Tomoda T., Tanaka M. (1988), A new system for real-time synthetic

aperture ultrasonic imaging, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 35, 6, 828–838.

Perry R.M., Martinson L.W. (1978), Radar Technology, Chap. Radar matched filtering, Artech

House, Boston, 163–169.

Phantom (525), URL http://www.fantom.dk/525.htm.

Redding N.J., Newsam G.N. (2001), Inverting the Circular Radon Transform, DTSO Research

Raport DTSO-RR-0211.

Selfridge A.R., Kino G.S., Khuriyakub B.T. (1980), A theory for the radiation pattern of a

narrow-strip acoustic transducer, Appl. Phys. Lett., 37, 1, 35–36.

Stergiopoulos S., Sullivan E.J. (1989), Extended towed array processing by an overlap correlator,

J. Acoust. Soc. Am., 86, 1, 158–171.

Stolt R.H. (1978), Migration by Fourier transform, Geophysics, 43, 23–48.

Tasinkevych Y. (2010), Wave generation by a finite baffle array in applications to beam-forming

analysis, Archives of Acoustics, 35, 4, 677–686.

Tasinkevych Y., Danicki E.J. (2011), Wave generation and scattering by periodic baffle system

in application to beam-forming analysis, Wave Motion, 48, 2, 130–145.

Tasinkevych Y., Klimonda Z., Lewandowski M., Nowicki A., Lewin P.A. (2013), Modified multi-

element synthetic transmit aperture method for ultrasound imaging: A tissue phantom study,

Ultrasonics, 53, 570–579.

Tasinkevych Y., Trots I., Nowicki A., Lewin P.A. (2012), Modified synthetic transmit aperture

algorithm for ultrasound imaging, Ultrasonics, 52, 2, 333–342.

Thomson R.N. (1984), Transverse and longitudinal resolution of the synthetic aperture focusing

technique, Ultrasonics, 22, 1, 9–15.

Trots I., Nowicki A., Lewandowski M., Tasinkevych Y. (2010), Multi-element synthetic transmit

aperture in medical ultrasound imaging, Arch. Acoust., 35, 4, 687–699.

Yen N.C., Carey W. (1989), Application of synthetic aperture processing to towed-array data, J.

Acoust. Soc. Am., 86, 2, 754–765.

DOI: 10.2478/aoa-2014-0061

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)