Archives of Acoustics, 42, 4, pp. 689–696, 2017
10.1515/aoa-2017-0071

Sensitivity Analysis of the Estimation of the Single-Number Sound Absorption Evaluation Index $DL_α$

Wojciech BATKO
AGH University of Science and Technology
Poland

Paweł PAWLIK
AGH University of Science and Technology
Poland

Grażyna WSZOŁEK
AGH University of Science and Technology
Poland

Acoustic barriers are assigned to the respective categories of sound absorbing properties on the basis of a single-number sound absorption evaluation index. Categories of absorbing properties play a significant role in selecting the barrier type for the given localisation. The estimation of the single-number sound absorption evaluation index is performed, among others, by means of measuring the sound absorption coefficient of the analysed acoustic barrier sample in the reverberation chamber.

The sensitivity analysis of the determination of the single-number sound absorption evaluation index was performed in this work. The estimation of the input parameters uncertainty contribution to the expanded uncertainty of the sound absorption evaluation index, was done first. The Monte Carlo method and the reduction interval arithmetic were used for this aim.

The relative sensitivity coefficients were determined by means of the author’s method based on the interval arithmetic. These coefficients contain information concerning the quantitative influence of the given input value on the final result.
Keywords: sensitivity analysis; acoustic barriers; interval arithmetic; Monte Carlo method
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Batko W., Pawlik P. (2012), New Approach to the Uncertainty Assessment of Acoustic Effects in the Environment, Archives Of Acoustics, 37, 1, 57–61.

Batko W., Pawlik P., Stępień B. (2015), Non-classical statistical methods in the uncertainty evaluation in acoustic research and modelling [in Polish: Nieklasyczne metody statystyczne w ocenie niepewności w badaniach i modelowaniu akustycznym], Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – PIB, Radom.

ISO/IEC Guide 98-3:2008 Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995).

ISO/IEC Guide 98-3-SP1:2008 Supplement 1 – Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) – Propagation of distributions using a Monte Carlo method.

Jakubiec J. (2002), Application of Reductive Interval Arithmetic to Uncertainty Evaluation of Measurument Data Processing Algorithms [in Polish: Redukcyjna arytmetyka interwałowa w zastosowaniu do wyznaczania niepewności algorytmów przetwarzania danych pomiarowych], Silesian University of Technology Press, Gliwice.

Moore R.E. (1962), Interval Arithmetic and Automatic Error Analysis in Digital Computing, Stanford, CA, PhD thesis, Stanford University.

Moore R.E. (1966), Interval Analysis, Englewood Cliffs NJ, Prentice-Hall.

PN-EN 1793-1:2013-05 – Road traffic noise reducing devices. Test method for determining the acoustic performance. Intrinsic characteristics of sound absorption

PN-EN 1793-3:2001 – Road traffic noise reducing devices. Test method for determining the acoustic performance. Normalized traffic noise spectrum

PN-EN ISO 354:2005 – Acoustics – Measurement of sound absorption in a reverberation room.

Przysucha B., Batko W., Szeląg A. (2015), Analysis of the accuracy of uncertainty noise measurement, Archives of Acoustics, 40, 2, 183–189.

Stępień B. (2016), Bootstrap Confidence Intervals for Noise Indicators, Acta Acustica United With Acustica, 102, 389–397.

Warmus M. (1956), Calculus of approximations, Bulletin de l'Academie Polonaise des Sciences 4, 5, 253–257.

Wszołek G. (2014), Uncertainty analysis for determination of sound absorption evaluation index DLα, 7th Forum Acusticum 2014, Kraków.




DOI: 10.1515/aoa-2017-0071