10.24425/aoa.2020.132488
Influence of Double-Panel Structure Modification on Vibroacoustical Properties of a Rigid Device Casing
References
References
Alimohammadi I., Ebrahimi H. (2017), Comparison between effects of low and high frequency noise on mental performance, Applied Acoustics, 126: 131–135, doi: 10.1016/j.apacoust.2017.05.021.
Bao C., Pan J. (1997), Experimental study of different approaches for active control of sound transmission through double walls, The Journal of the Acoustical Society of America, 102(3): 1664–1670, doi: 10.1121/1.420105.
Chai G.B. (1993), Free vibration of rectangular isotropic plates with and without a concentrated mass, Computers & Structures, 48(3): 529–532, doi: 10.1016/0045-7949(93)90331-7.
Chraponska A., Wrona S., Rzepecki J., Mazur K., Pawełczyk M. (2019), Active structural acoustic control of an active casing placed in a corner, Applied Sciences, 9(6): 1059, doi: 10.3390/app9061059.
Dalaei M., Kerr A.D. (1996), Natural vibration analysis of clamped rectangular orthotropic plates, Journal of Sound and Vibration, 189(3): 400, doi: 10.1006/jsvi.1996.0026.
Elliott S.J. (2001), Signal processing for active control, Academic Press, London. 7. Gorman D.J. (1982), Free vibration analysis of rectangular plates, Elsevier, New York.
Kim H.S., Kim S.R., Lee S.H., Seo Y.H, Ma P.S. (2016), Sound transmission loss of double plates with an air cavity between them in a rigid duct, Journal of the Acoustical Society of America, 139(5): 2324–2333, doi: 10.1121/1.4946987.
Klanner M., Ellermann K. (2018), Improvement of the wave based method for thick plate vibrations, The International Journal of Acoustics and Vibration, 23(4): 492–505, doi: 10.20855/ijav.2018.23.41222.
Leniowska L., Sierzega M. (2019), Vibration control of a circular plate using parametric controller with phase shift adjustment, Mechatronics, 58: 39–46, doi: 10.1016/j.mechatronics.2019.01.003.
Ma X., Chen K., Ding S., Yu H. (2016), Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure, Journal of Sound and Vibration, 371: 2–18, doi: 10.1016/j.jsv.2016.02.009.
Mao Q., Pietrzko S.J. (2013), Control of noise and structural vibration. A Matlab – based approach, Springer, London.
Mazur K., Pawełczyk M. (2011), Active noisevibration control using the filteredreference LMS algorithm with compensation of vibrating plate temperature variation, Archives of Acoustics, 36(1): 65–76.
Morzynski L., Szczepanski G. (2018), Double panel structure for active control of noise transmission, Archives of Acoustics, 43(4): 689–696, doi: 10.24425/aoa.2018.125162.
Oliazadeh P., Farshidianfar A., Crocker M. (2019), Study of sound transmission through singleand double-walled plates with absorbing material: Experimental and analytical investigation, Applied Acoustics, 145: 7–24, doi: 10.1016/j.apacoust.2018.09.014.
Pietrzko S.J., Mao Q. (2008), New results in active and passive control of sound transmission through double wall structures, Aerospace Science and Technology, 12(1): 42–53, doi: 10.1016/J.AST.2007.10.006.
Rzepecki J., Chraponska A., Mazur K., Wrona S., Pawełczyk M. (2019), Semiactive reduction of device casing vibration using a set of piezoelectric elements, Manuscript submitted to 14th Conference on Active Noise and Vibration Control Methods 2019, Krakow-Wieliczka, Poland.
Sibielak M., Raczka W., Konieczny J., Kowal J. (2015), Optimal control based on a modified quadratic performance index for systems disturbed by sinusoidal signals, Mechanical Systems and Signal Processing, 64–65: 498–519, doi: 10.1016/j.ymssp.2015.03.031.
Timoshenko S., Woinowski-Krieger W. (1959), Theory of plates and shells, 2nd ed., McGraw-Hill, New York.
Wrona S., Pawełczyk M. (2018), Feedforward control of double-panel casing for active reduction of device noise, Journal of Low Frequency Noise, Vibration and Active Control, 3–5, doi: 10.1177/1461348418811429.
DOI: 10.24425/aoa.2020.132488