10.24425/aoa.2020.134071
Attenuation Characteristics of Vibration in a Locally Resonant Phononic Crystal Frame Structure
References
Chen Z.G., Wu Y. (2016), Tunable topological phononic crystals, Physical Review Applied, 5(5): 054021, doi: 10.1103/PhysRevApplied.5.054021.
Dong Y., Hong Y., Du J. et al. (2017), Research on local resonance and Bragg scattering coexistence in phononic crystal, Modern Physics Letters B, 31(11): 1750127, doi: 10.1142/S0217984917501275.
Hsu J.C., Wu T.T. (2007), Lamb waves in binary locally resonant phononic plates with two-dimensional lattices, Applied Physics Letters, 90(20): 201904, doi: 10.1063/1.2739369.
Hu R., Xu Y., Lu X., Zhang C., Zhang Q., Ding J. (2018), Integrated multi-type sensor placement and response reconstruction method for high-rise buildings under unknown seismic loading, Structural Design of Tall & Special Buildings, 27, 6, 1453, doi: 10.1002/tal.1453.
Jin Y., Pennec Y., Pan Y. et al. (2017), Phononic crystal plate with hollow pillars connected by thin bars, Journal of Physics D Applied Physics, 50, 3, 035301, doi: 10.1088/1361-6463/50/3/035301.
Lebon F., Rizzoni R. (2018), Higher order interfacial effects for elastic waves in one dimensional phononic crystals via the Lagrange-Hamilton's principle, European Journal of Mechanics-A/Solids, 67, 58-70, doi: 10.1016/j.euromechsol.2017.08.014.
Li S., Dou Y., Chen T. et al. (2018), A novel metal-matrix phononic crystal with a low-frequency, broad and complete, locally-resonant band gap, Modern Physics Letters B, 32, 19, 1850221, doi: 10.1142/S0217984918502214.
Liu Z., Zhanhg X., Mao Y. et al. (2000), Locally Resonant Sonic Materials, Science, 289, 5485, 1734-1736, doi: 10.1126/science.289.5485.1734.
Ma J., Hou Z., Assouar B.M. (2014), Opening a large full phononic band gap in thin elastic plate with resonant units, Journal of Applied Physics, 115, 9, 093508-1-5, doi: 10.1063/1.4867617.
Oudich M., Li Y., Assouar B.M. et al. (2010), A sonic band gap based on the locally resonant phononic plates with stubs, New Journal of Physics, 12, 2, 201-206, doi: 10.1088/1367-2630/12/8/083049.
Qian D., Shi Z. (2017), Bandgap properties in simplified model of composite locally resonant phononic crystal plate, Physics Letters A, 381, 40, 3505-3513, doi: 10.1016/j.physleta.2017.08.058.
Ramezani M., Bathaei A., Ghorbani-Tanha A.K. (2018), Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load, Earthquake Engineering and Engineering Vibration, 17, 4, 903-915, doi: 10.1007/s11803-018-0483-4.
Vladimirovich D.A., Aleksandrovich T.V., Petrovich G.O. (2014), Research on noise in hotel rooms, World Applied Sciences Journal, 87-88, doi: 10.5829/idosi.wasj.2014.30.mett.38.
Wagner M.R., Graczykowski B., Reparaz J.S. et al. (2016), Two-Dimensional Phononic Crystals: Disorder Matters, Nano Letters, 16, 9, 5661, doi: 10.1021/acs.nanolett.6b02305.
Xiao W., Zeng G.W., Cheng Y.S. (2008), Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs, Applied Acoustics, 69, 3, 255-261, doi: 10.1016/j.apacoust.2006.09.003.
Zhang X., Liu Z., Liu Y. et al. (2003), Elastic wave band gaps for three-dimensional phononic crystals with two structural units, Physics Letters A, 313, 5, 455-460, doi: 10.1016/s0375-9601(03)00807-7.
DOI: 10.24425/aoa.2020.134071