Archives of Acoustics, 45, 3, pp. 487–497, 2020
10.24425/aoa.2020.134066

Optimization of the Morphological Parameters of a Metal Foam for the Highest Sound Absorption Coefficient Using Local Search Algorithm

Mohammad Javad JAFARI
Shahid Beheshti University of Medical Sciences
Iran, Islamic Republic of

Ali KHAVANIN
Tarbiat Modares University
Iran, Islamic Republic of

Touraj EBADZADEH
Materials and Energy Research Center
Iran, Islamic Republic of

Mahmood FAZLALI
Shahid Beheshti University
Iran, Islamic Republic of

Mohsen Niknam SHARAK
University of Birjand
Iran, Islamic Republic of

Rohollah Fallah MADVARI
Shahid Beheshti University of Medical Sciences
Iran, Islamic Republic of

Due to its unique features, the metal foam is considered as one of the newest acoustic absorbents. It is a navel approach determining the structural properties of sound absorbent to predict its acoustical behavior. Unfortunately, direct measurements of these parameters are often difficult. Currently, there have been acoustic models showing the relationship between absorbent morphology and sound absorption coefficient (SAC). By optimizing the effective parameters on the SAC, the maximum SAC at each frequency can be obtained. In this study, using the Benchmarking method, the model presented by Lu was validated in MATLAB coding software. Then, the local search algorithm (LSA) method was used to optimize the metal foam morphology parameters. The optimized parameters had three factors, including porosity, pore size, and metal foam pore opening size. The optimization was applied to a broad band of frequency ranging from 500 to 8000 Hz. The predicted values were in accordance with benchmark data resulted from Lu model. The optimal range of the parameters including porosity of 50 to 95%, pore size of 0.09 to 4.55 mm, and pore opening size of 0.06 to 0.4 mm were applied to obtain the highest SAC for the frequency range of 500 to 800 Hz. The optimal amount of pore opening size was 0.1 mm in most frequencies to have the highest SAC. It was concluded that the proposed method of the LSA could optimize the parameters affecting the SAC according to the Lu model. The presented method can be a reliable guide for optimizing microstructure parameters of metal foam to increase the SAC at any frequency and can be used to make optimized metal foam.
Keywords: Sound Absorption Coefficient (SAC); Local Search Algorithm (LSA); metal foam; optimization
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Allard J., Atalla N. (2009), Propagation of sound in porous media: modelling sound absorbing materials, 2nd ed., John Wiley & Sons.

Arya V., Garg N., Khandekar R., Meyerson A., Munagala K., Pandit V. (2004), Local search heuristics for k-median and facility location problems. SIAM Journal on computing, 33(3): 544–562.

Azizan M.A., Ismail M.H., Salleh N.A.M., Natarajan D.V. (2017), Sound absorption properties at high sound frequency of open cell aluminium foam, Journal of Mechanical Engineering, 1: 161–173.

Banhart J. (2001), Manufacture, characterisation and application of cellular metals and metal foams, Progress in materials science, 46(6): 559–632, doi: 10.1016/S0079-6425(00)00002-5.

Bialek J. et al. (2016), Benchmarking and validation of cascading failure analysis tools, IEEE Transactions on Power Systems, 31(6): 4887–4900, doi: 10.1109/TPWRS.2016.2518660.

Chen F., Zhang A., He D. (2001), Control of the degree of pore-opening for porous metals, Journal of Materials Science, 36(3): 669–672, doi: 10.1023/A:1004828706175.

Cox T.J., D’antonio P. (2009), Acoustic absorbers and diffusers: theory, design and application, CRC Press.

Despois J.-F., Mortensen A. (2005), Permeability of open-pore microcellular materials, Acta Materialia, 53(5): 1381–1388, doi: 10.1016/j.actamat.2004.11.031.

Di Gaspero L., Schaerf A., Cadoli M., Slany W., Falaschi M. (2003), Local search techniques for scheduling problems: algorithms and software tool, PhD Thesis, Forum.

Duncan W.R. (1996), A guide to the project management body of knowledge, Project Management Institute.

Egab L., Wang X., Fard M. (2014), Acoustical characterisation of porous sound absorbing materials: a review, International Journal of Vehicle Noise and Vibration, 10(1–2): 129–149, doi: 10.1504/IJVNV.2014.059634.

Fränti P., Kivijärvi J. (2000), Randomised local search algorithm for the clustering problem, Pattern Analysis & Applications, 3(4): 358–369, doi: 10.1007/s100440070007.

Gibson L.J., Ashby M.F. (1999), Cellular solids: structure and properties, Cambridge University Press.

Hakamada M., Kuromura T., Chen Y., Kusuda H., Mabuchi M. (2006a), High sound absorption of porous aluminum fabricated by spacer method, Applied Physics Letters, 88(25): 254106, doi: 10.1063/1.2216104.

Hakamada, M., Kuromura T., Chen Y., Kusuda H., Mabuchi, M. (2006b), Sound absorption characteristics of porous aluminum fabricated by spacer method, Journal of Applied Physics, 100(11): 114908, doi: 10.1063/1.2390543.

Han F., Seiffert G., Zhao Y., Gibbs B. (2003), Acoustic absorption behaviour of an open-celled aluminium foam, Journal of Physics D: Applied Physics, 36(3): 294–302, doi: 10.1088/0022-3727/36/3/312.

Haupt R.L., Haupt S.E. (2004), Practical genetic algorithms, Wiley-Interscience.

Hoos H.H., Stützle T. (2004), Stochastic local search: Foundations and applications, Elsevier.

Jiejun W., Chenggong L., Dianbin W., Manchang G. (2003), Damping and sound absorption properties of particle reinforced al matrix composite foams, Composites Science and Technology, 63(3–4): 569–574, doi: 10.1016/S0266-3538(02)00215-4.

Jin W. et al. (2015), Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation, Materials, 8(11): 7511–7518, doi: 10.3390/ma8115395.

Jouya M., Khayati S. (2017), Review local search algorithms in artificial intelligence, International Academic Journal of Science and Engineering, 4(1): 190–195, https://www.iaiest.com/data-cms/articles/20191108051701pmIAJSE1710018.pdf.

Ke H., Donghui Y., Siyuan H., Deping H. (2011), Acoustic absorption properties of open-cell al alloy foams with graded pore size, Journal of Physics D: Applied Physics, 44(36): 365405, doi: 10.1088/0022-3727/44/36/365405.

Kuromura T., Hakamada M., Chen Y., Kusuda H., Mabuchi M. (2007), Sound absorption behavior of porous al produced by spacer method, ]in:] THERMEC 2006 Supplement, Advanced Materials Research, Trans Tech Publications Ltd, Vol. 15, pp. 422–427, doi: 10.4028/www.scientific.net/AMR.15-17.422.

Li Y., Li Z., Han F. (2014), Air flow resistance and sound absorption behavior of open-celled aluminum foams with spherical cells, Procedia Materials Science, 4: 187–190, doi: 10.1016/j.mspro.2014.07.591.

Li Y., Wang X., Wang X., Ren Y., Han F., Wen C. (2011), Sound absorption characteristics of aluminum foam with spherical cells, Journal of Applied Physics, 110(11): 113525, doi: 10.1063/1.3665216.

Lu T.J., Chen F., He D. (2000), Sound absorption of cellular metals with semiopen cells, The Journal of the Acoustical Society of America, 108(4): 1697–1709, doi: 10.1121/1.1286812.

Lu T.J., Hess A., Ashby M. (1999), Sound absorption in metallic foams, Journal of Applied Physics, 85(11): 7528–7539, doi: 10.1063/1.370550.

Maniezzo V., Stützle T., Voß S. (2009), Hybridizing Metaheuristics and Mathematical Programming. Series: Annals of Information Systems, Springer, New York.

Navacerrada M., Fernández P., Díaz C., Pedrero A. (2013), Thermal and acoustic properties of aluminium foams manufactured by the infiltration process, Applied Acoustics, 74(4): 496–501, doi: 10.1016/j.apacoust.2012.10.006.

Neithalath N., Marolf A., Weiss J., Olek J. (2005), Modeling the influence of pore structure on the acoustic absorption of enhanced porosity concrete, Journal of Advanced Concrete Technology, 3(1): 29–40, doi: 10.3151/jact.3.29.

Otaru A.J., Morvan H.P., Kennedy A. (2018), Modelling and optimisation of sound absorption in replicated microcellular metals, Scripta Materialia, 150: 152–155, doi: 10.1016/j.scriptamat.2018.03.022.

Pedregal P. (2006), Introduction to optimization, Vol. 46, Springer Science & Business Media.

Raut S.V., Kanthale V., Kothavale B. (2016), Review on application of aluminum foam in sound absorption technology, International Journal of Current Engineering and Technology, Special Issue 4: 178–181, http://dx.doi.org/10.14741/Ijcet/22774106/spl.4.2016.36.

Rossi F., Van Beek P., Walsh T. (2006), Handbook of constraint programming, Elsevier.

Sastry K., Goldberg D., Kendall G. (2005), Genetic algorithms, [in:] Search methodologies: Introductory tutorials in optimization and decision support techniques, Burke E.K., Kendall G. [Eds], Springer, pp. 97–125.

Stützle T.G. (1999), Local search algorithms for combinatorial problems – analysis, improvements and new applications, Ios Pr Inc.

Wang F., Wang L.-c., Wu J.-g., You X.-h. (2007), Sound absorption property of open-pore aluminum foams, [in:] Transactions of Nonferrous Metals Society of China, pp. S1446–S1449.

Wang X., Lu T.J. (1999), Optimized acoustic properties of cellular solids, The Journal of the Acoustical Society of America, 106(2): 756–765, doi: 10.1121/1.427094.

Wang X., Wang X., Wei X., Han F., Wang X. (2011), Sound absorption of open celled aluminium foam fabricated by investment casting method, Materials Science and Technology, 27(4): 800–804, doi: 10.1179/026708309X12506934374047.

Xie Z., Ikeda T., Okuda Y., Nakajima H. (2004a), Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification, Materials Science and Engineering: A, 386(1–2): 390–395, doi: 10.1016/j.msea.2004.07.058.

Xie Z.K., Ikeda T., Okuda Y., Nakajima H. (2004b), Characteristics of sound absorption in lotustype porous magnesium, Japanese Journal of Applied Physics, 43(10): 7315–7319, doi: 10.1143/jjap.43.7315.

Zhang B., Zhu J. (2016), Inverse methods of determining the acoustical parameters of porous sound absorbing metallic materials, [in:] Proceedings of Meetings on Acoustics 22ICA, 28(1): 015006, doi: 10.1121/2.0000329.




DOI: 10.24425/aoa.2020.134066