Archives of Acoustics, 45, 4, pp. 747–752, 2020
10.24425/aoa.2020.135280

High-Directional Sound Propagation Over the Earth’s Surface

Denis Sergeevich RAKOV
1. National Research Tomsk Polytechnic University 2. Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Aleksandr S. RAKOV
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yury A. CHURSIN
National Research Tomsk Polytechnic University
Russian Federation

Vsevolod V. PAVLICHEV
National Research Tomsk Polytechnic University
Russian Federation

Artyom O. IGUMNOV
National Research Tomsk Polytechnic University
Russian Federation

The article discusses the issues of accounting the direction pattern of parametric antenna array the propagation of sound over the Earth’s surface. As a radiator, a parametric antenna array is used. A description is given of measuring equipment and experimental research methods. The Delaney-Bezley model was used as a model of the Earth’s surface impedance. The research results showed the importance of accounting the direction pattern of parametric antenna array in predicting the sound pressure level of a propagating acoustic signal over the Earth’s surface. On the example of a difference signal with a frequency of 2 kHz, the calculation of the sound pressure level on a 100-meter path with the influence of the Earth’s surface is shown. The results obtained showed a good agreement between the theoretical calculation and experimental data.
Keywords: parametric loudspeaker; ultrasound; primary frequency; difference frequency; radiation pattern; outdoor propagation of sound; sound attenuation
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Adachi A. Hashiguchi H. (2019), Application of parametric speakers to radio acoustic sounding system, Atmos. Mcas. Tech. Discuss. Discussion started: 10 May 2019.

Albert,, D.G. (2003), Observations of acoustic surface waves in outdoor sound propagation, Journal of the Acoustical Society of America, 113(5): 2495–2500, doi: 10.1121/1.1559191.

Aoki K., Kamakura T., Kumamoto Y. (1991), Parametric loudspeaker – characteristics of acoustic field and suitable modulation of carrier ultrasound, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 74(9): 76–82, doi: 10.1002/ecjc.4430740908.

Attenborough K. (2007), Predicting Outdoor Sound, London– New York: Taylor & Francis.

Bennett M. B., Blackstock D.T. (1975), Parametric array in air, Journal of the Acoustical Society of America, 57(3): 562–568, doi: 10.1121/1.380484.

Berktay H. O. (1965), Possible exploitation of nonlinear acoustics in underwater transmitting applications, Journal Sound and Vibration, 2(4): 435–461, doi: 10.1016/0022-460X(65)90122-7.

Boullosa R.R., Pérez-López A., Dorantes-Escamilla R., Rendón P. L. (2016), An airborne parametric array, Applied Acoustics, 112: 116–122, doi:10.1016/j.apacoust.2016.05.015.

Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3(2): 105–116, doi: 10.1016/0003-682X(70)90031-9.

Gan W., Tan E., Kuo S. (2011), Audio Projection, IEEE Signal Processing Magazine, 28(1): 43–57, doi: 10.1109/MSP.2010.938755.

Ju H.S., Kim Y. (2010), Near-field characteristics of the parametric loudspeaker using ultrasonic transducers, Applied Acoustics, 71(9): 793–800, doi:10.1016/j.apacoust.2010.04.004.

Kamakura T., Tani M., Kumamoto Y., Breazeale M.A. (1994), Parametric sound radiation from a rectangular aperture source, Acta Acustica united with Acustica, 80(4): 332–338.

Krasnenko N.P., Rakov A.S., Rakov D.S., Shamanaeva L.G. (2014). Influence of impedance properties of the earth's surface on sound attenuation during near-ground propagation, Russian Physics Journal, 57(1): 100–109, doi: 10.1007/s11182-014-0213-y.

Li K.M. (1994), A high-frequency approximation of sound propagation in a stratified moving atmosphere above a porous ground surface, Journal of the Acoustical Society of America, 95(4): 1840–1852, doi: 10.1121/1.408699.

Miki Y. (1990), Acoustical properties of porous materials – modifications of Delany-Bazley models, Journal of the Acoustical Society of Japan (E), 11(1): 19–24, doi: 10.1250/ast.11.19.

Muir T.G., Vestrheim M. (1979), Parametric arrays in air with applications to atmospheric sounding, Journal de Physique Colloques, 40(C8): C8-101–C8-110, doi: 10.1051/jphyscol:1979819.

Piercy J.E., Embleton T.F.W., Sutherland L.C. (1977), Review of noise propagation in the atmosphere, Journal of the Acoustical Society of America, 61(6): 1403–1418, doi: 10.1121/1.381455.

Rakov D.S., Rakov A.S., Kudryavtsev A.N., Krasnenko N.P., Chursin Y.A., Murin M.A. (2019), A study of directional patterns of ultrasonic parametric array, Archives of Acoustics, 44(2): 301–307, doi: 10.24425/aoa.2019.128493.

Reis J. (2016), Short overview in parametric loudspeakers array technology and its implications in spatialization in electronic music, Proceedings of ICMC 2016 – 42nd International Computer Music Conference, pp. 241–248, retrieved from www.scopus.com.

Rudenko O.V. (1974), On parametric interaction of progressive sound waves [in Russian], Akusticheskij Zhurnal, 20(1): 108–111, http://www.akzh.ru/pdf/1974_1_108-111.pdf.

Shi C., Gan W.S. (2010), Development of parametric loudspeaker, IEEE Potentials, 29(6): 20–24, doi: 10.1109/MPOT.2010.938148.

Westervelt P.J. (1963), Parametric acoustic array, Journal of the Acoustical Society of America, 35(4): 535–537, doi: 10.1121/1.1918525.

Yoneyama M., Fujimoto J., Kawamo Y., Sasabe S. (1983), The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design, Journal of the Acoustical Society of America, 73(5): 1532–1536, doi: 10.1121/1.389414.

Zabolotskaya E.A., Soluyan S.I., Khokhlov R.V. (1966), Ultrasonic parametric amplifier [in Russian], Akusticheskij Zhurnal, 12(2): 188–191, http://www.akzh.ru/pdf/1966_2_188-191.pdf.

Zverev V.A., Kalatchev A.I. (1970), On the cross-modulation effects by inlersection of sound beams [in Russian], Akusticheskij Zhurnal, 16(2): 245–251, http://www.akzh.ru/pdf/1970_2_245-251.pdf.




DOI: 10.24425/aoa.2020.135280