10.24425/aoa.2021.136558
The Effect of Sonication Parameters on the Thickness of the Produced MoS2 Nano-Flakes
References
Babu Arumugam A., Rajamohan V., Bandaru N., Sudhagar P.E., G. Kumbhar S. (2019), Vibration Analysis of a Carbon Nanotube Reinforced Uniform and Tapered Composite Beams, Archives of Acoustics, 44(2): 309–320, doi: 10.24425/aoa.2019.128494
Backes C. et al. (2014), Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets, Nature Communications, 5: 4576, doi: 10.1038/ncomms5576.
Backes C. et al. (2017), Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chemistry of Materials, 29(1): 243–255, doi: 10.1021/acs.chemmater.6b03335.
Backes C. et al. (2020), Production and processing of graphene and related materials, 2D Materials, 7(2): 022001, doi: 10.1088/2053-1583/ab1e0a.
Bang J.H., Suslick K.S. (2010), Applications of ultrasound to the synthesis of nanostructured materials, Advanced Materials, 22(10): 1039–1059. doi: 10.1002/adma.200904093
Bari R. et al. (2015), Liquid phase exfoliation and crumpling of inorganic nanosheets, Physical Chemistry Chemical Physics, 17(14): 9383–9393, doi: 10.1039/C5CP00294J.
Brent J.R., Savjani N., O'Brien P. (2017), Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets, Progress in Materials Science, 89: 411–478, doi: 10.1016/j.pmatsci.2017.06.002.
Brotchie A., Grieser F., Ashokkumar M. (2009), Effect of power and frequency on bubble-size distributions in acoustic cavitation, Physical Review Letters, 102(8): 084302, doi: 10.1103/physrevlett.102.084302.
Butler S.Z. et al. (2013), Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7 (4): 2898–2926, doi: 10.1021/nn400280c.
Capello C., Fischer U., Hungerbühler K. (2007), What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chemistry, 9(9): 927–934, doi: 10.1039/B617536H.
Choi W., Choudhary N., Han G.H., Park J., Akinwande D., Hee-Lee Y. (2017), Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, 20(3): 116–130, doi: 10.1016/j.mattod.2016.10.002.
Coleman J.N. et al. (2011), Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331(6017): 568–571, doi: 10.1126/science.1194975
Connors K.A., Wright J. (1989), Dependence of surface tension on composition of binary aqueous-organic solutions, Analytical Chemistry, 61(3): 194–198, doi: 10.1021/ac00178a001.
Ebrahiminia A., Mokhtari-Dizaji M., Toliyat T. (2013), Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity, Ultrasonics Sonochemistry, 20: 366–372, doi: 10.1016/j.ultsonch.2012.05.016.
Frisenda R. et al. (2016), Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials, Journal of Physics D: Applied Physics, 50(7): 074002, doi: 10.1088/1361-6463/aa5256.
Ghasemi F., Mohajerzadeh S. (2016), Sequential solvent exchange method for controlled exfoliation of MoS2 suitable for phototransistor fabrication, ACS Applied Materials & Interfacesaces, 8 (45): 31179–31191, doi: 10.1021/acsami.6b07211.
Hajnorouzi A., Afzalzadeh R., Ghanati F. (2014), Studies on the regularity of wave intensity in ultrasonic bath and spherical reactor, Journal of Acoustical Engineering Society of Iran, 2(1): 32–39.
Han J.T. et al. (2014), Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation, Scientific Reports, 4(1): 5133, doi: 10.1038/srep05133.
Han S.A., Bhatia R., Kim S-W. (2015), Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides, Nano Convergence, 2(1): 17, doi: 10.1186/s40580-015-0048-4.
Huo C., Yan Z., Song X., Zeng H. (2015), 2D materials via liquid exfoliation: a review on fabrication and applications, Science Bulletin, 60(23): 1994–2008, doi: 10.1007/s11434-015-0936-3.
Jawaid A. et al. (2016), Mechanism for liquid-phase exfoliation of MoS2, Chemistry of Materials, 28(1): 337–348, doi: 10.1021/acs.chemmater.5b04224.
Kajbafvala M., Farbod M. (2018), Effective size selection of MoS2 nanosheets by a novel liquid cascade centrifugation: Influence of the flakes dimensions on electrochemical and photoelectrochemical applications, Journal of Colloid and Interface Science, 527: 159–171, doi: 10.1016/j.jcis.2018.05.026.
Kiełczyński P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J. (2019), Application of ultrasonic methods for evaluation of high-pressure physicochemical parameters of liquids, Archives of Acoustics, 44(2): 329–337, doi: 10.24425/aoa.2019.128496.
Kudryashova O.B., Vorozhtsov A., Danilov P. (2019), Deagglomeration and coagulation of particles in liquid metal under ultrasonic treatment, Archives of Acoustics, 44(3), 543–549, doi: 10.24425/aoa.2019.129269.
Liu Y.D. et al. (2013), Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route, Journal of Alloys and Compounds, 571: 37–42, doi: 10.1016/j.jallcom.2013.03.031.
Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. (2010), Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105(13): 136805, doi: 10.1103/physrevlett.105.136805
Marcus Y. (2018), Extraction by subcritical and supercritical water, methanol, ethanol and their mixtures, Separations, 5(1): 4, doi: 10.3390/separations5010004.
Mas-Ballesté R., Gómez-Navarro C., J. Gómez–Herrero, Zamora F. (2011), 2D materials: to graphene and beyond, Nanoscale, 3(1): 20–30, doi: 10.1039/C0NR00323A.
Merouani S., Hamdaoui O., Rezgui Y., Guemini M. (2013), Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles – theoretical study, Ultrasonics Sonochemistry, 20(3): 815–819, doi: 10.1016/j.ultsonch.2012.10.015.
Miró P., Audiffred M., Heine T. (2014), An atlas of two-dimensional materials, Chemical Society Reviews, 43(18): 6537–6554, doi: 10.1039/C4CS00102H.
Nguyen E.P. et al. (2015), Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2, Chemistry of Materials, 27(1): 53–59, doi: 10.1021/cm502915f.
Nguyen T.P., Sohn W., Oh J.H., Jang H.W., Kim S.Y. (2016), Size-dependent properties of two-dimensional MoS2 and WS2, The Journal of Physical Chemistry C, 120(8): 10078–10085, doi: 10.1021/acs.jpcc.6b01838.
Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. (2013), Liquid exfoliation of layered materials, Science, 340(6139): 1226419-(1–18), doi: 10.1126/science.1226419.
Niu Y. et al. (2018), Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2, Nanomaterials, 8(9): 725, doi: 10.3390/nano8090725.
Peng J., Weng J. (2015), One-pot solution-phase preparation of a MoS2/graphene oxide hybrid, Carbon, 94: 568–576. doi: 10.1016/j.carbon.2015.07.035.
Pokhrel N., Vabbina P.K., Pala N. (2016), Sonochemistry: Science and Engineering, Ultrasonics Sonochemistry, 29: 104–128, doi: 10.1016/j.ultsonch.2015.07.023.
Qiao W. et al. (2014), Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets, RSC Advances, 4(92): 50981–50987, doi: 10.1039/C4RA09001B.
Samadi M., Sarikhani N., Zirak M., Zhang H., Zhang H-L., Moshfegh A.Z. (2018), Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons, 3(2): 90−204, doi: 10.1039/C7NH00137A.
Shen J. et al. (2015), Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components, Nano Letters, 15(8): 5449–5454, doi: 10.1021/acs.nanolett.5b01842.
Song X., Hub J., Zeng H. (2013), Two-dimensional semiconductors: recent progress and future perspectives, Journal of Materials Chemistry C, 1(17): 2952–2969, doi: 10.1039/C3TC00710C.
Tamura R., Miyata M. (Eds) (2015), Advances in Organic Crystal Chemistry: Comprehensive Reviews, Springer, doi: 10.1007/978-4-431-55555-1.
Tonndorf P. et al. (2013), Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2, Optics Express, 21(4): 4908–4916, doi: 10.1364/OE.21.004908.
Vella D. et al. (2016), Femtosecond spectroscopy on MoS2 flakes from liquid exfoliation: surfactant independent exciton dynamics, Journal of Nanophotonics, 10(1): 012508-1–012508-8. doi: 10.1117/1.JNP.10.012508.
Voshell A., Terrones M., Rana M. (2018), Review of optical properties of two-dimensional transition metal dichalcogenides, Proceedings of SPIE 10754, Wide Band gap Power and Energy Devices and Applications III, 107540L, doi: 10.1117/12.2323132
Wang F. et al. (2015), Synthesis, properties and applications of 2D non-graphene materials, Nanotechnology, 26(29): 292001, doi: 10.1088/0957-4484/26/29/292001.
Wang Q.H, Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S. (2012), Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7(11): 699–712, doi: 10.1038/nnano.2012.193.
Wang Z.M. (2014), MoS2-Materials, Physics, and Devices. Lecture Notes in Nanoscale Science and Technology, Vol. 21, Springer International Publishing, Switzerland, doi: 10.1007/978-3-319-02850-7.
Xu H., Zeiger B.W., Suslick K.S. (2013), Sonochemical synthesis of nanomaterials, Chemical Society Reviews, 42(7): 2555–2567, doi: 10.1039/C2CS35282F.
Yang L. et al. (2018), Properties, preparation and applications of low dimensional transition metal dichalcogenides, Nanomaterials, 8(7): 463, doi: 10.3390/nano8070463.
Zhang G., Liu H., Qu J., Li J. (2016), Two-dimensional layered MoS2: rational design, properties and electrochemical applications, Energy & Environmental Science, 9: 1190–1209, doi: 10.1039/C5EE03761A.
Zhu J. et al. (2016), Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics, RSC Advances, 6: 110604–110609, doi: 10.1039/C6RA22496B.
DOI: 10.24425/aoa.2021.136558