10.24425/aoa.2021.136565
Experimental Study of Identifying Emission Sources of Acoustic Signals on the Cylinder Body of a Two-Stroke Marine Diesel Engine
References
Ahmad T.A., Alireza M. (2019), Fault detection of injectors in diesel engines using vibration time-frequency analysis, Applied Acoustic, 143: 48–58, doi: 10.1016/j.apacoust.2018.09.002.
Albarbar A., Gu F., Ball A.D. (2010), Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis, Measurement, 43(10): 1376–1386, doi: 10.1016/j.measurement.2010.08.003.
Ben-Sasi A. (2005), The exploitation of instantaneous angular speed for machinery condition monitoring, Ph.D. Thesis, University of Manchester.
Boness R.J., Mcbride S.L. (1991), Adhesive and abrasive wear studies using acoustic emission techniques, Wear, 149(1–2): 41–53, doi: 10.1016/0043-1648(91)90363-Y.
Brown E., Douglas R., Nivesrangsan P., Reuben R.L., Robertson A., Steel J.A. (2004), Source identification using acoustic emission on large bore cylinder liners, Proceedings of the 26th European Conference on Acoustic Emission Testing, pp. 637–643, Berlin, Germany.
Douglas R.M. (2007), Monitoring of the piston ring-pack and cylinder liner interface in diesel engines through acoustic emission measurements, Ph.D. Thesis, Heriot-Watt University.
Douglas R.M., Steel J.A., Reuben R.L. (2006), A study of the tribological behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission, Tribology International, 39(12): 1634–1642, doi: 10.1016/j.triboint.2006.01.005.
Dykas B., Harris J. (2017), Acoustic emission characteristics of a single cylinder diesel generator at various loads and with a failing injector, Mechanical Systems and Signal Processing, 93: 397–414, doi: 10.1016/j.ymssp.2017.01.049.
Elamin F., Fan Y., Gu F., Ball A. (2010), Diesel engine valve clearance detection using acoustic emission, Advances in Mechanical Engineering, 2: 1–7, doi: 10.1155/2010/495741.
El-Ghamry M., Steel J.A., Reuben R.L., Fog T.L. (2004), Indirect measurement of cylinder pressure from diesel engine using acoustic emission, Mechanical Systems and Signal Processing, 19(4): 751–765, doi: 10.1016/j.ymssp.2004.09.004.
Gill J., Reuben R.L., Steel J.A., Asquith J. (2000), A study of small HSDI diesel engine fuel injection equipment faults using acoustic emission, Journal of Acoustic Emission, 18: 1–6.
Jafari S.M., Mehdigholi H., Behzad M. (2014), Valve fault diagnosis in internal combustion engines using acoustic emission and artificial neural network, Shock and Vibration, 2014: Article ID 823514, doi: 10.1155/2014/823514.
Jafarian, K., Mobin, M., Jafari-Marandi, R., & Rabiei, E. (2018), Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring, Measurement, 128: 527–536, doi: 10.1016/j.measurement.2018.04.062.
Jiaa C.L., Dornfeld D.A. (1990), Experimental studies of sliding friction and wear via acoustic emission signal analysis, Wear, 139(2): 403–424, doi: 10.1016/0043-1648(90)90059-J.
Liang B., Gu F., Ball A. (1996), Detection and diagnosis of valve faults in recuperating compressors, Proceedings of the 9th International Congress and Exhibition on Condition Monitoring and Diagnostics Engineering Management, pp. 421– 430, Sheffield, UK.
Lin T.R., Tan A.C.C., Mathew J. (2011), Condition monitoring and diagnosis of injector faults in a diesel engine using in-cylinder pressure and acoustic emission techniques, [in:] Su Z., Law S.S., Xia Y., Cheng L. (Eds) Proceedings of the 14th Asia Pacific Vibration Conference – Dynamics for Sustainable Engineering – Vol. 1, pp. 454–463, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, https://eprints.qut.edu.au/47625/.
Mechefske C.K., Sun G. (2001), Monitoring sliding wear using acoustic emission, Proceedings of the 14th International Conference on Condition Monitoring and Diagnostic Engineering Management, COMADEM, pp. 57–65, Manchester, UK.
Nivesrangsan P., Steel J.A., Reuben R.L. (2005a), Acoustic emission mapping of diesel engines for spatially located time series – Part II: Spatial reconstitution, Mechanical Systems and Signal Processing, 21(2): 1084–1102, doi: 10.1016/j.ymssp.2005.08.024.
Nivesrangsan P., Steel J.A., Reuben R.L. (2005b), Source location of acoustic emission in diesel engines, Mechanical Systems and Signal Processing, 21(2): 1103–1114., doi: 10.1016/j.ymssp.2005.12.010
Pearson K.R. (1905), Skew variation, a rejoinder, Biometrika, 4(1–2): 169–212.
Price E.D., Lees A.W., Friswell M.I. (2005), Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(2): 85–98, doi: 10.1243/135065005X9817.
Shuster M., Combs D., Karrip K., Burek D. (2000), Piston ring cylinder liner scuffing phenomenon studies using acoustic emission technique, Proceedings of the CEC/SAE Spring Fuels & Lubricants Meeting and Exposition, pp. 901–913, Paris, France.
Večeř P., Kreidl M., Šmíd R. (2005), Condition indicators for gearbox condition monitoring systems, Acta Polytech, 45(6): 35–43, doi: 10.14311/782 .
Wei N., Gu F., Wang T., Li G., Xu Y., Yang L., Ball A.D. (2015), Characterisation of acoustic emission for the frictional effect in engine using wavelets based multi-resolution analysis, Proceedings of 21st International Conference on Automation and Computing (ICAC), pp. 1–6, Glasgow, UK, doi: 10.1109/IConAC.2015.7313961..
Wu W., Lin T.R., Tan A.C.C. (2015), Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines, Mechanical Systems and Signal Processing, 64–65: 479–497, doi: 10.1016/j.ymssp.2015.03.016.
Yunusa-Kaltungo A., Sinha J.K., Elbhbah K. (2014), HOS analysis of measured vibration data on rotating machines with different simulated faults, [in:] Dalpiaz G. et al. (Eds) Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Lecture Notes in Mechanical Engineering, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-39348-8_6.
Zhu J., Nostrand T., Spiegel C., Morton B. (2014), Survey of condition indicators for condition monitoring systems, Proceedings of Annual Conference of the Prognostics and Health Management Society, pp. 635–647, Texas, USA.
DOI: 10.24425/aoa.2021.136565