10.24425/aoa.2021.136587
Broadening Low-Frequency Band Gap of Double-Panel Structure Using Locally Resonant Sonic Crystal Comprised of Slot-Type Helmholtz Resonators
References
Arjunan A., Wang C.J., Yahiaoui K. (2014), Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls, Journal of Sound and Vibration, 333(23): 6140–6155, doi: 10.1016/j.jsv.2014.06.032.
Bies D.A., Hansen C.H. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13(5): 357–391, doi: 10.1016/0003-682X(80)90002-X.
Bolton J.S., Shiau N.M., Kang Y.J. (1996), Sound transmission through multi–panel structures lined with elastic porous materials, Journal of Sound and Vibration, 191(3): 317–347, doi: 10.1006/jsvi.1996.0125.
Cavalieri T., Cebrecos A., Groby J.-P., Chaufour C., Romero-García V. (2019), Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: Application to train noise reduction, Applied Acoustics, 146: 1–8, doi: 10.1016/j.apacoust.2018.10.020.
Chalmers L., Elford D.P., Kusmartsev F.V., Swallowe G.M. (2009), Acoustic band gap formation in two-dimensional locally resonant sonic crystals comprised of Helmholtz resonators, International Journal of Modern Physics B, 23: 4234–4243, doi: 10.1142/9789814289153_0023.
Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3(2): 105–116, doi: 10.1016/0003-682X(70)90031-9.
Doutres O., Atalla N. (2010), Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission, Journal of the Acoustical Society of America, 128(2): 664–671, doi: 10.1121/1.3458845.
Garcia-Raffi L.M. et al. (2018), Broadband reduction of the specular reflections by using sonic crystals: A proof of concept for noise mitigation in aerospace applications, Aerospace Science and Technology, 73: 300–308, doi: 10.1016/j.ast.2017.11.048.
Guild M.D., Rothko M., Sieck C.F., Rohde C., Orris G. (2018), 3D printed sound absorbers using functionally–graded sonic crystals, Journal of the Acoustical Society of America, 143(3): 1714–1714, doi: 10.1121/1.5035582.
Gulia P., Gupta A. (2018), Enhancing the sound transmission loss through acoustic double panel using sonic crystal and porous material, Journal of the Acoustical Society of America, 144(3): 1435–1442, doi: 10.1121/1.5054296.
Gulia P., Gupta A. (2019), Sound attenuation in triple panel using locally resonant sonic crystal and porous material, Applied Acoustics: 156, 113–119, doi: 10.1016/j.apacoust.2019.07.012.
Kang Y.J., Bolton J.S. (1996), A finite element model for sound transmission through foam lined double panel structure, Journal of the Acoustical Society of America, 99(5): 2755–2755, doi: 10.1121/1.414856.
Kim M.-J. (2019a), Improving sound transmission through triple-panel structure using porous material and sonic crystal, Archives of Acoustics, 44(3): 533–541, doi: 10.24425/aoa.2019.129268.
Kim M.-J. (2019b), Numerical study for increasement of low frequency sound insulation of double–panel structure using sonic crystals with distributed Helmholtz resonators, International Journal of Modern Physics B, 33(14): 1950138, doi: 10.1142/S0217979219501388.
Martínez-Sala R., Sancho J., Sánchez J.V., Gómez V., Llinares J., Meseguer F. (1995), Sound attenuation by sculpture, Nature, 378(6554): 241–241, doi: 10.1038/378241a0.
Morandi F., Miniaci M., Marzani A., Barbaresi L., Garai M. (2016), Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties, Applied Acoustics, 114: 294–306, doi: 10.1016/j.apacoust.2016.07.028.
Panneton R., Atalla N. (1996), Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials, Journal of the Acoustical Society of America, 100(1): 346–354, doi: 10.1121/1.415956.
Qian D. (2018), Wave propagation in a LRPC composite double panel structure with periodically attached pillars and etched holes, Archives of Acoustics, 43(4): 717–725, doi: 10.24425/aoa.2018.125165.
Sanchez-Dehesa J., Garcia-Chocano V.M., Torrent D., Cervera F., Cabrera S., Simon F. (2011), Noise control by sonic crystal barriers made of recycled materials, Journal of the Acoustical Society of America, 129(3): 1173–1173, doi: 10.1121/1.3531815.
Sanchez-Perez J.V., Rubio C., Martinez-Sala R., Sanchez-Grandia R., Gomez V. (2002), Acoustic barriers based on periodic arrays of scatterers, Applied Physics Letters, 81(27): 5240–5242, doi: 10.1063/1.1533112.
Sgard F.C., Atalla N., Nicolas J. (2000), A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings, Journal of the Acoustical Society of America, 108(6): 2865–2872, doi: 10.1121/1.1322022.
Tanneau O., Casimir J.B., Lamary P. (2006), Optimization of multilayered panels with poroelastic components for an acoustical transmission objective, Journal of the Acoustical Society of America, 120(3): 1227–1238, doi: 10.1121/1.2228663.
Wang J., Lu T.J., Woodhouse J., Langley R.S., Evans J. (2005), Sound transmission through lightweight double–leaf partitions: Theoretical modelling, Journal of Sound and Vibration, 286(4–5): 817–847, doi: 10.1016/j.jsv.2004.10.020.
Xin F.X., Lu T.J., Chen C. Q. (2008), Vibroacoustic behavior of clamp mounted double–panel partition with enclosure air cavity, Journal of the Acoustical Society of America, 124(6): 3604–3612, doi: 10.1121/1.3006956.
DOI: 10.24425/aoa.2021.136587