Archives of Acoustics, 46, 1, pp. 17–24, 2021
10.24425/aoa.2021.136556

New Theoretical Model for Mass Sensitivity of Love Wave Sensors

Piotr KIEŁCZYŃSKI
Institute of Fundamental Technological Research, Polish Academy of Sciences
Poland

Marek SZALEWSKI
Institute of Fundamental Technological Research, Polish Academy of Sciences
Poland

Andrzej BALCERZAK
Institute of Fundamental Technological Research, Polish Academy of Sciences
Poland

Krzysztof WIEJA
Institute of Fundamental Technological Research, Polish Academy of Sciences
Poland

In this work we analyse basic characteristics of Love wave sensors implemented in waveguide structures composed of a lossy viscoelastic surface layer deposited on a lossless elastic substrate. It has to be noted that Love wave sensors working at ultrasonic frequencies have the highest mass density sensitivity $S_σ^(v_p )$ among all known ultrasonic sensors, such as QCM, Lamb wave or Rayleigh wave sensors. In this paper we have established an exact analytical formula for the mass density sensitivity $S_σ^(v_p )$ of the Love wave sensors in the form of an explicit algebraic expression. Subsequently, using this developed analytical formula, we compared theoretically the mass density sensitivity $S_σ^(v_p )$ for various Love wave waveguide structures, such as: (1) lossy PMMA surface layer on lossless Quartz substrate and (2) lossy PMMA on lossless Diamond substrate. The performed analysis shows that the mass density sensitivity $S_σ^(v_p )$ (real and imaginary part) for a sensor with a structure PMMA on Diamond is five times higher than that of a PMMA on Quartz structure. It was found that the mass density sensitivity $S_σ^(v_p )$ for Love wave sensors increases with the increase of the ratio: bulk shear wave velocity in the substrate to bulk shear wave velocity in the surface layer.
Keywords: Love wave sensors; mass sensitivity; complex dispersion equation; viscoelastic layers
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Achenbach J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam.

Auld B.A. (1990), Acoustic Fields and Waves in Solids, Vol. II, Krieger Publishing Company, Florida.

Ballantine D.S. et al. (1997), Acoustic Wave Sensors. Theory, Design, and Physico-Chemical Applications, Academic Press, San Diego.

Chen X., Liu D. (2010), Analysis of viscosity sensitivity for liquid property detection applications based on SAW sensors, Materials Science and Engineering C, 30(8): 1175–1182, doi: 10.1016/j.msec.2010.06.008.

Chu S-Y., Water W., Liaw J-T. (2003), An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure, Ultrasonics, 41(2): 133–139, doi: 10.1016/S0041-624X(02)00430-4.

El Baroudi A., Le Pommellec J.Y. (2019), Viscoelastic fluid effect on the surface wave propagation, Sensors & Actuators A: Physical, 291: 188–195, doi: 10.1016/j.sna.2019.03.039.

Haskell N.A. (1953), The dispersion of surface waves on multilayered media, Bulletin of the Seismological Society of America, 43(1): 17–34.

Ke G.H., Dong H., Kristensen M., Thompson M. (2011), Modified Thomson Haskell matrix methods for surface-wave dispersion-curve calculation and their accelerated root-searching schemes, Bulletin of the Seismological Society of America, 101(4): 1692–170, doi: 10.1785/0120100187.

Kiełczynski P., Pajewski W., Szalewski M. (1998), Piezoelectric sensors for investigations of microstructures, Sensors and Actuators A: Physical, 65(1): 13–18, doi: 10.1016/S0924-4247(98)80003-4.

Kiełczynski P., Szalewski M. (2011), An inverse method for determining the elastic properties of thin layers using Love surface waves, Inverse Problems in Sciences and Engineering, 19(1): 31–43, doi: 10.1080/17415977.2010.531472.

Kiełczynski P. et al. (2014a), Application of ultrasonic wave celerity measurement for evaluation of physicochemical properties of olive oil at high pressure and various temperatures, LWT – Food Science and Technology, 57(1): 253–259, doi: 10.1016/j.lwt. 2014.01.027.

Kiełczynski P. et al. (2014b), Determination of physicochemical properties of diacylglycerol oil at high pressure by means of ultrasonic methods, Ultrasonics, 54: 2134–2140, doi: 10.1016/j.ultras.2014.06.013.

Kiełczynski P., Szalewski M., Balcerzak A. (2014c), Inverse procedure for simultaneous evaluation of viscosity and density of Newtonian liquids from dispersion curves of Love waves, Journal of Applied Physics, 116(4): 044902 (7), doi: 10.1063/1.4891018.

Kiełczynski P., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J., Siegoczynski R.M. (2015a), Ultrasonic evaluation of thermodynamic parameters of liquids under high pressure, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(6): 1122–1131, doi: 10.1109/TUFFC.2015. 007053.

Kiełczynski P., Szalewski M., Balcerzak A., Wieja K. (2015b), Group and phase velocity of Love waves propagating in elastic functionally graded materials, Archives of Acoustics, 40(2): 273–281, doi: 10.1515/aoa-2015-0030.

Kiełczynski P., Szalewski M., Balcerzak A., Wieja K. (2016), Propagation of ultrasonic Love wave in non-homogeneous elastic functionally graded materials, Ultrasonics, 65: 220–227, doi: 10.1016/j.ultras. 2015.10.001.

Kiełczynski P. (2018), Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, 53: 419–432, doi: 10.1016/j.apm.2017.09.013.

Kushibiki J., Takanaga I., Nishiyama S. (2002), Accurate measurements of the acoustical physical constants of synthetic-quartz for SAW devices, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(1): 125–135, doi: 10.1109/58.981390.

Liu J.-S., Wang L.-J., He S.-T. (2015), On the fundamental mode Love wave devices incorporating thick viscoelastic layers, Chinese Physics Letters, 32: 064301 (3 pages), doi: 10.1088/0256-307X/32/6/064301.

Mortet V., Williams O. A., Haenen K. (2008), Diamond: a material for acoustic devices, Physica Status Solidi (a), 205(5): 1009–1020, doi: 10.1002/pssa.200777502.

Pajewski W., Kiełczynski P., Szalewski M. (1998), Resonant piezoelectric ring transformer, IEEE Ultrasonics Symposium, Sendai, Japan, October 5–8, pp. 977–980.

Rasmusson A., Gizeli E. (2001), Comparison of poly(methylmethacrylate) and Novolak waveguide coatings for an acoustic biosensor, Journal of Applied Physics, 90(12): 5911–5914, doi: 10.1063/1.1405142.

Raum K., Brandt J. (2003), Simultaneous determination of acoustic impedance, longitudinal and lateral wave velocities for the characterization of the elastic microstructure of cortical bone, World Congress on Ultrasonics, Paris, September 7–10, pp. 321–324.

Rocha Gaso M.I., Jiménez Y., Francis L.A., Arnau A. (2013), Love wave biosensors: A review, [in:] State of the Art in Biosensors, Rinken T. [Ed.], Rijeka: IntechOpen, doi: 10.5772/53077.

Rose J.L. (2014), Ultrasonic Guided Waves in Solid Media, Cambridge: Cambridge University Press.

Takayanagi K., Kondoh J. (2018), Improvement of estimation method for physical properties of liquid using shear horizontal surface acoustic wave sensor response, Japaneese Journal of Applied Physics, 57: 07LD02 (7 pages), doi: 10.7567/JJAP.57.07LD02.

Vikström A., Voinova M.V. (2016), Soft-film dynamics of SH-SAW sensors in viscous and viscoelastic fluids, Sensing and Bio-sensing Research, 11(Part 2): 78–85, doi: 10.1016/j.sbsr.2016.08.004.

Thomson W.T. (1950), Transmission of elastic waves through a stratified solid medium, Journal of Applied Physics, 21(2): 89–93, doi: 10.1063/1.1699629.

Wu H., Xiong X., Zu H.,Wang J.H.-C.,Wang Q.-M. (2017), Theoretical analysis of a Love wave biosensor in liquid with a viscoelastic wave guiding layer, Journal of Applied Physics, 121(5): 054501 (13 pages), doi: 10.1063/1.4975112.

Xu Z., Yuan Y.J. (2018), Implementation of guiding layers of surface acoustic wave devices: A review, Biosensors and Bioelectronics, 99: 500–512, doi: 10.1016/j.bios.2017.07.060.




DOI: 10.24425/aoa.2021.136556