10.24425/aoa.2021.138143
Acoustic Attenuation Performance Analysis and Optimisation of Expansion Chamber Coupled Micro-perforated Cylindrical Panel Using Response Surface Method
References
Andersen, K. S. (2008), Analyzing muffler performance using the transfer matrix method. Proceedings of the Comsol Conference, Hannover.
Aziz, M. S. A., Abdullah, M. Z., Khor, C. Y., & Azid, I. A. (2015), Optimization of pin through hole connector in thermal fluid–structure interaction analysis of wave soldering process using response surface methodology. Simulation Modelling Practice and Theory, 57, 45–57.
Citarella, R., & Landi, M. (2011), Acoustic analysis of an exhaust manifold by indirect boundary element method. The Open Mechanical Engineering Journal, 5(1).
Delany, M. E., & Bazley, E. N. (1970), Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105–116.
Fu, J., Chen, W., Tang, Y., Yuan, W., Li, G., & Li, Y. (2015), Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis. Advances in Mechanical Engineering, 7(4), 1687814015575954.
Gaeta, R. J., & Ahuja, K. K. (2016), Effect of orifice shape on acoustic impedance. International Journal of Aeroacoustics, 15(4–5), 474–495.
Ganguli, R. (2002), Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. Journal of Sound and Vibration, 258(2), 327–344.
Ishak, M. H. H., Ismail, F., Aziz, M. S. A., Abdullah, M. Z., & Abas, A. (2019), Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach. The International Journal of Advanced Manufacturing Technology, 103(1–4), 1139–1153.
Ji, Z. L., & Selamet, A. (2000), Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 48(5), 151–156.
Kallias, A. N., & Rafiq, M. I. (2013), Performance assessment of corroding RC beams using response surface methodology. Engineering Structures, 49, 671–685.
Leong, W. C., Abdullah, M. Z., & Khor, C. Y. (2013), Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology. Microelectronics Reliability, 53(12), 1996–2004.
Li, Z., & Liang, X. (2007), Vibro-acoustic analysis and optimization of damping structure with response surface method. Materials & Design, 28(7), 1999–2007.
Liu, Z., Zhan, J., Fard, M., & Davy, J. L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 121, 25–32.
Lu, C., Chen, W., Liu, Z., Du, S., & Zhu, Y. (2019), Pilot study on compact wideband micro-perforated muffler with a serial-parallel coupling mode. Applied Acoustics, 148, 141–150.
Munjal, M. L. (1987), Acoustics of ducts and mufflers with application to exhaust and ventilation system design. John Wiley & Sons.
Na, Y., Lancaster, J., Casali, J., & Cho, G. (2007), Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textile Research Journal, 77(5), 330–335.
Qian, Y. J., Kong, D. Y., Liu, S. M., Sun, S. M., & Zhao, Z. (2013), Investigation on micro-perforated panel absorber with ultra-micro perforations. Applied Acoustics, 74(7), 931–935.
Qin, X., Wang, Y., Lu, C., Huang, S., Zheng, H., & Shen, C. (2016), Structural acoustics analysis and optimization of an enclosed box-damped structure based on response surface methodology. Materials & Design, 103, 236–243.
Ren, S. W., Van Belle, L., Claeys, C., Xin, F. X., Lu, T. J., Deckers, E., & Desmet, W. (2019), Improvement of the sound absorption of flexible micro-perforated panels by local resonances. Mechanical Systems and Signal Processing, 117, 138–156.
Selamet, A., & Ji, Z. L. (1999), Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. Journal of Sound and Vibration, 223(2), 197–212.
Selamet, A., Ji, Z. L., & Radavich, P. M. (1998), Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. Comparison with experimental and computational studies. Journal of Sound and Vibration, 213(4), 619–641.
Tan, W.-H., & Mohd Ripin, Z. (2013), Analysis of exhaust muffler with micro-perforated panel. Journal of Vibroengineering, 15(2), 558–573.
Tan, W.-H., & Ripin, Z. M. (2016), Optimization of double-layered micro-perforated panels with vibro-acoustic effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(3), 745–760.
Vasile, O. (2010), Transmission Loss Assessment for a Muffler by Boundary Element Method Approach. Analele Universitatii’Eftimie Murgu’, 17(1).
Wang, Y., Qin, X., Huang, S., Lu, L., Zhang, Q., & Feng, J. (2017), Structural-borne acoustics analysis and multi-objective optimization by using panel acoustic participation and response surface methodology. Applied Acoustics, 116, 139–151.
Wu, M. Q. (1997), Micro-perforated panels for duct silencing. Noise Control Engineering Journal, 45(2), 69–77.
Yuksel, E., Kamci, G., & Basdogan, I. (2012), Vibro-acoustic design optimization study to improve the sound pressure level inside the passenger cabin. Journal of Vibration and Acoustics, 134(6).
Zhenlin, J., Qiang, M., & Zhihua, Z. (1994), Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow. Journal of Sound and Vibration, 173(1), 57–71.
DOI: 10.24425/aoa.2021.138143