Archives of Acoustics, 46, 2, pp. 323–333, 2021
10.24425/aoa.2021.136586

Nonlinear Interaction of Magnetoacoustic Modes in a Quasi-Isentropic Plasma Flow

Anna PERELOMOVA
Technical University of Gdansk
Poland

The nonlinear interaction of magnetoacoustic waves in a plasma is analytically studied. A plasma is an open system. It is affected by the straight constant equilibrium magnetic flux density forming constant angle with the wave vector which varies from 0 till π. The nonlinear instantaneous equation which describes excitation of secondary wave modes in the field of intense magnetoacoustic perturbations is derived by use of projecting. There is a diversity of nonlinear interactions of waves in view of variety of wave modes, which may be slow or fast and may propagate in different directions. The excitation is analysed in the physically meaningful cases, that is: harmonic and impulsive exciter, oppositely or accordingly directed dominant and secondary wave modes.
Keywords: non-linear magnetohydrodynamics; adiabatical instability
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Anderson N.S. (1953), Longitudinal magnetohydrodynamic waves, The Journal of the Acoustical Society of America, 23(3): 529–532, doi: 10.1121/ 1.1907074.

Ballai I. (2006), Nonlinear waves in solar plasmas – a review, Journal of Physics: conference Series, 44(20): 20–29, doi:10.1088/1742-6596/44/1/003.

Brodin G., Stenflo L., Shukla P.K. (2006), Nonlinear interactions between kinetic Alfvén and ion-sound waves, Solar Physics, 236: 285–291, doi: 10.1007/ s11207-006-0125-2.

Callen J.D. (2003), Fundamentals of Plasma Physics, Lecture Notes, University of Wisconsin, Madison.

Chin R., Verwichte E., Rowlands G., Nakariakov V.M. (2010), Self-organization of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17(32): 107–118, doi: 10.1063/1.3314721.

Dahlburg R.B., Mariska J.T. (1988), Influence of heating rate on the condensational instability, Solar Physics, 117(1): 51–56, doi: 10.1007/BF00148571.

Field G.B. (1965), Thermal instability, The Astrophysical Journal, 142: 531–567, doi: 10.1086/148317.

Geffen N. (1963), Magnetogasdynamic flows with shock waves, The Physics of Fluids, 6(4): 566–571, doi: 10.1063/1.1706774.

Krall N.A., Trivelpiece A.W. (1973), Principles of Plasma Physics, McGraw Hill, New York.

Landau L.D., Lifshitz E.M. (1987), Fluid Mechanics (2nd ed.), Pergamon, New York.

Leble S., Perelomova A. (2018), The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.

Lyubchyk O., Voitenko V. (2014), Nonlocal coupling of kinetic sound waves, Annales Geophysicae, 32(11): 1407–1413, doi: 10.5194/angeo-32-1407-2014.

Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics. Part I, Acta Acustica united with Acustica, 82(4): 579–606.

Molevich N.E. (2001), Sound amplification in inhomogeneous flows of nonequilibrium gas, Acoustical Physics, 47(1): 102–105, doi: 10.1134/1.1340086.

Nakariakov V.M., Mendoza-Briceno C.A., Ibánez M.H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic Plasmas, The Astrophysical Journal, 528(2): 767–775, doi: 10.1086/ 308195.

Osipov A.I., Uvarov A.V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Soviet Physics Uspekhi, 35(11): 903–923.

Parker E.N. (1953), Instability of thermal fields, The Astrophysical Journal, 117: 431–436, doi: 10.1086/ 145707.

Perelomova A. (2003), Interaction of modes in nonlinear acoustics: theory and applications to pulse dynamics, Acta Acustica united with Acustica, 89: 86–94.

Perelomova A. (2016a), On the nonlinear effects of magnetoacoustic perturbations in a perfectly conducting viscous and thermoconducting gas, Acta Physica Polonica A, 130(3): 727–733, doi: 10.12693/ APhysPolA.130.727.

Perelomova A. (2016b), On the nonlinear distortions of sound and its coupling with other modes in a gaseous plasma with finite electric conductivity in a magnetic field, Archives of Acoustics, 41(4): 691– 699, doi: 10.1515/aoa-2016-0066.

Perelomova A. (2018a), Magnetoacoustic heating in a quasi-isentropic magnetic gas, Physics of Plasmas, 25: 042116, doi: 10.1063/1.5025030.

Perelomova A. (2018b), Magnetoacoustic heating in nonisentropic plasma caused by different kinds of heating-cooling function, Advances in Mathematical Physics, 2018: Article ID 8253210, 12 pages, doi: 10.1155/2018/8253210.

Perelomova A. (2019a), Propagation of initially sawtooth periodic and impulsive signals in a quasiisentropic magnetic gas, Physics of Plasmas, 26: 052304, doi: 10.1063/1.5093390.

Perelomova A. (2019b), Nonlinear interaction of modes in a planar flow of a gas with viscous and thermal attenuation, Archives of Acoustics, 44(3): 551–559, doi: 10.24425/aoa.2019.129270.

Petviashvili V.I., Pokhotelov O.A. (1992), Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach, Berlin.

Ponomarev E.A. (1961), On the propagation of lowfrequency oscillations along the magnetic field in a viscous compressible plasma, Soviet Astronomy, 5: 673– 677.

Rudenko O.V., Soluyan S.I. (1977), Theoretical Foundations of Nonlinear Acoustics, Plenum, New York.

Sharma V.D., Singh L.P., Ram R. (1981), Propagation of discontinuities in magnetogasdynamics, Physics of Fluids, 24(7): 1386–1387.

Vesecky J.F., Antiochos S.K., Underwood J.H. (1979), Numerical modeling of quasi-static coronal loops. I – Uniform energy input, Astrophysical Journal, 233(3): 987–997, doi: 10.1086/157462.

Zavershinsky D.I., Molevich N.E. (2014), Alfven wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium, Technical Physics Letters, 40(8): 701–703, doi: 10.1134/S1063785014080288.




DOI: 10.24425/aoa.2021.136586