10.24425/aoa.2022.142012
Comparison of Moving Average and Differential Operation for Wheeze Detection in Spectrograms
References
Bae W., Kim K., Yoon J.-S. (2021), Interrater reliability of spectrogram for detecting wheezing in children, Pediatrics International, 64: e15003, doi: 10.1111/ped.15003.
Bertran K., Sánchez T., Brockmann P.E. (2019), Monitoring asthma during sleep: Methods and techniques, [in:] Allergy and Sleep, pp. 175–183, Springer, Cham, doi: 10.1007/978-3-030-14738-9_14.
Carbone A., Kiyono K. (2016), Detrending moving average algorithm: Frequency response and scaling performances, Physical Review E, 93(6): 063309, doi: 10.1103/PhysRevE.93.063309.
Charbonneau G., Ademovic E., Cheetham B.M.G., Malmberg L.P., Vanderschoot J., Sovijärvi A.R.A. (2000), Basic techniques for respiratory sound analysis, European Respiratory Review, 10(77): 625–635.
Comajuncosas J.M. (2009), Expressive Breath Modeling, Master Thesis, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona.
de Cheveigné A., Nelken I. (2019), Filters: when, why, and how (not) to use them, Neuron, 102(2): 280–293, doi: 10.1016/j.neuron.2019.02.039.
Fraiwan L., Hassanin O., Fraiwan M., Khassawneh B., Ibnian A.M., Alkhodari M. (2021), Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers, Biocybernetics and Biomedical Engineering, 41(1): 1–14, doi: 10.1016/j.bbe.2020.11.003.
Gavriely N., Palti Y., Alroy G., Grotberg J.B. (1984), Measurement and theory of wheezing breath sounds, Journal of Applied Physiology, 57(2): 481–492, doi: 10.1152/jappl.1984.57.2.481.
Hashemi A., Arabalibiek H., Agin K. (2011), Classification of wheeze sounds using wavelets and neural networks, [in:] 2011 International Conference on Biomedical Engineering and Technology, pp. 127–131, Singapore.
Haykin S., Van Veen B. (1998), Signals and Systems, pp. 72–87, Wiley, New York.
Jeeru S. (2020), Wheezing sound source separation applied to single channel respiratory audio mixtures, Master Thesis, Department of Telecommunication Engineering, Universidad de Jaén, https://hdl.handle.net/10953.1/13601.
Kumar A., Abhishek K., Chakraborty C., Kryvinska N. (2021), Deep learning and internet of things based lung ailment recognition through coughing spectrograms, IEEE Access, 9: 95938–95948, doi: 10.1109/ACCESS.2021.3094132.
Lang R., Fan Y., Liu G., Liu G. (2021), Analysis of unlabeled lung sound samples using semi-supervised convolutional neural networks, Applied Mathematics and Computation, 411: 126511, doi: 10.1016/j.amc.2021.126511.
Li J. et al. (2021), LungAttn: advanced lung sound classification using attention mechanism with dual TQWT and triple STFT spectrogram, Physiological Measurement, 42(10): 105006, doi: 10.1088/1361-6579/ac27b9.
Li J., Hong Y. (2015), Wheeze detection algorithm based on spectrogram analysis, [in:] 2015 8th International Symposium on Computational Intelligence and Design (ISCID), pp. 318–322, China, doi: 10.1109/ISCID.2015.310.
Lin B.-S., Wu H.-D., Chen S.-J. (2015), Automatic wheezing detection based on signal processing of spectrogram and back-propagation neural network, Journal of Healthcare Engineering, 6(4): 649–672, doi: 10.1260/2040-2295.6.4.649.
Lu B.-Y., Hsueh M.-L., Wu H.-D. (2021), Transmission Perspective on the Mechanism of Coarse and Fine Crackle Sounds, Archives of Acoustics, 46(2): 289–300, doi: 10.24425/aoa.2021.136583.
Mendes L. et al. (2015), Detection of wheezes using their signature in the spectrogram space and musical features, [in:] 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5581–5584, doi: 10.1109/EMBC.2015.7319657.
Nguyen T., Pernkopf F. (2022), Lung sound classification using co-tuning and stochastic normalization, IEEE Transactions on Biomedical Engineering (Early Access), doi: 10.1109/TBME.2022.3156293.
Sovijärvi A.R.A., Dalmasso F., Vanderschoot J., Malmberg L.P., Righini G., Stoneman S.A.T. (2000), Definition of terms for applications of respiratory sounds, European Respiratory Review, 10(77): 597–610.
Tabata H. et al. (2018), Changes in the breath sound spectrum during methacholine inhalation in children with asthma, Respirology, 23(2): 168–175, doi: 10.1111/resp.13177.
Taplidou S.A., Hadjileontiadis L.J. (2007), Wheeze detection based on time-frequency analysis of breath sounds, Computers in Biology and Medicine, 37(8): 1073–1083, doi: 10.1016/j.compbiomed.2006.09.007.
Taplidou S.A., Hadjileontiadis L.J., Penzel T., Gross V., Panas S.M. (2003), WED: An efficient wheezing-episode detector based on breath sounds spectrogram analysis, [in:] Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), pp. 2531–2534, doi: 10.1109/IEMBS.2003.1280431.
Wang Y., Guan X., Du Y., Nan N. (2020), Harmonics based representation in clarinet tone quality evaluation, [in:] 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), pp. 766–770, doi: 10.1109/ICASSP40776.2020.9054020.
DOI: 10.24425/aoa.2022.142012