Perfect Absorption for Modulus-Near-Zero Acoustic Metamaterial in Air or Underwater at Low-Frequency

Downloads

Authors

  • Fatma Nafaa GAAFER Wasit University‏, Iraq

Abstract

We theoretically propose a method to achieve an optimum absorbing material through a modulus-near-zero (MNZ) metamaterial immersed in air or water with a change in slit width part. The destructive interference has paved the way to achieve perfect absorption (PA). Depending upon theoretical analysis, an acoustic metamaterial (AMMs) that supports resonance with a monopole (140 Hz) is developed to construct a low-frequency sound-absorbing technology. The dissipative loss effect can be by attentively controlling onto slit width to achieve perfect absorption. When there are thin slit width and visco-thermal losses in the structure, it is observed that they lead to high absorption. We use finite element simulations via COMSOL Multiphysics software to theoretical measurement in impedance tube and show the influence of structural parameters in both mediums. The results are of extraordinary correspondence at low frequency to achieve optimum perfect absorption (99%). That might support AMMs to actual engineering-related applications in the process of mitigating noise, slow sound trapping, notch filtering, energy conversion, and time reversal technology.

Keywords:

acoustic metamaterial, perfect absorption, Fabry-Pérot resonances, subwavelength scale, modulusnear-zero.

References

1. Chen J., Huang H., Huo S., Tan Z., Xie X., Cheng J. (2018), Self-ordering induces multiple topological transitions for elastic waves in phononic crystals, Physical Review B, 98(1): 14302, https://doi.org/10.1103/PhysRevB.98.014302

2. Chen Y., Huang G., Zhou X., Hu G., Sun C.-T. (2014), Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model, The Journal of the Acoustical Society of America, 136(6): 2926–2934, https://doi.org/10.1121/1.4901706

3. Duan Y. et al. (2015), Theoretical requirements forbroadband perfect absorption of acoustic waves by ultra-thin elastic meta-films, Scientific Reports, 5(1): 12139, https://doi.org/10.1038/srep12139

4. Feng L. (2013), Modified impedance tube measurements and energy dissipation inside absorptive materials, Applied Acoustics, 74(12): 1480–1485, https://doi.org/10.1016/j.apacoust.2013.06.013

5. García-Chocano V.M., Christensen J., Sánchez-Dehesa J. (2014), Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics, Physical Review Letters, 112(14): 144301, https://doi.org/10.1103/PhysRev Lett.112.144301.

6. He H. et al. (2018), Topological negative refraction of surface acoustic waves in a Weyl phononic crystal, Nature, 560(7716), 61–64, https://doi.org/10.1038/s41586-018-0367-9

7. Huang H.H., Sun C.T., Huang G.L. (2009), On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science, 47(4): 610–617, https://doi.org/10.1016/j.ijengsci.2008.12.007

8. Huang S., Fang X.,Wang X., Assouar B., Cheng Q., Li Y. (2018), Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Applied Physics Letters, 113(23): 233501, https://doi.org/10.1063/1.506 3289.

9. Landi M., Zhao J., Prather W.E., Wu Y., Zhang L. (2018), Acoustic purcell effect for enhanced emission, Physical Review Letters, 120(11): 114301, https://doi.org/10.1103/PhysRevLett.120.114301

10. Lee S.H., Park C.M., Seo Y.M.,Wang Z.G., Kim C.K. (2009), Acoustic metamaterial with negative density, Physics Letters, Section A: General, Atomic and Solid State Physics, 373(48): 4464–4469, https://doi.org/10.1016/j.physleta.2009.10.013

11. Lee T., Nomura T., Dede E.M., Iizuka H. (2019), Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls, Physical Review Applied, 11(2): 24022, https://doi.org/10.1103/PhysRevApplied.11.024022

12. Li J., Chan C.T. (2004), Double-negative acoustic metamaterial, Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(5): 4, https://doi.org/10.1103/PhysRevE.70.055602

13. Li Y., Assouar B.M. (2016), Acoustic metasurfacebased perfect absorber with deep subwavelength thickness, Applied Physics Letters, 108(6): 63502, https://doi.org/10.1063/1.4941338

14. Liu J., Guo H.,Wang T. (2020a), A review of acoustic metamaterials and phononic crystals, Crystals, 10(4): 305, https://doi.org/10.3390/cryst10040305

15. Liu Y. et al. (2020b), Three-dimensional fractal structure with double negative and density-near-zero properties on a subwavelength scale, Materials and Design, 188: 108470, https://doi.org/10.1016/j.matdes.2020.108470

16. Liu Z. et al. (2000), Locally resonant sonic materials, Science, 289(5485): 1734–1736, https://doi.org/10.1126/science.289.5485.1734

17. Lu Z., Cui Y., Debiasi M. (2016), Active membranebased silencer and its acoustic characteristics, Applied Acoustics, 111: 39–48, https://doi.org/10.1016/j.apacoust.2016.03.042

18. Lu Z., Cui Y., Debiasi M., Zhao Z. (2015a), A tunable dielectric elastomer acoustic absorber, Acta Acustica United with Acustica, 101(4): 863–866, https://doi.org/10.3813/AAA.918881

19. Lu Z., Godaba H., Cui Y., Foo C.C., Debiasi M., Zhu J. (2015b), An electronically tunable duct silencer using dielectric elastomer actuators, The Journal of the Acoustical Society of America, 138(3): EL236–EL241, https://doi.org/10.1121/1.4929629

20. Lu Z., Shrestha M., Lau G.K. (2017), Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator, Applied Physics Letters, 110(18), 182901, https://doi.org/10.1063/1.4982634

21. Lu Z., Yu X., Lau S.K., Khoo B.C., Cui F. (2020), Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation, Applied Acoustics, 157: 107003, https://doi.org/10.1016/j.apacoust.2019.107003

22. Ma F., Wu J.H., Huang M. (2015), Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation, EPJ Applied Physics, 71(3): 30504, https://doi.org/10.1051/epjap/2015150310

23. Ma G., Yang M., Xiao S., Yang Z., Sheng P. (2014), Acoustic metasurface with hybrid resonances, Nature Materials, 13(9): 873–878, https://doi.org/10.1038/nmat3994

24. Mahjoob M.J., Mohammadi N., Malakooti S. (2009), An investigation into the acoustic insulation of triple-layered panels containing Newtonian fluids: theory and experiment, Applied Acoustics, 70(1): 165–171, https://doi.org/10.1016/j.apacoust.2007.12.002

25. Mei J., Ma G., Yang M., Yang Z., Wen W., Sheng P. (2012), Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Communications, 3(1): 1–7, https://doi.org/10.1038/ncomms1758

26.Melde K., Mark A.G., Qiu T., Fischer P. (2016), Holograms for acoustics, Nature, 537(7621): 518–522, https://doi.org/10.1038/nature19755

27. Naify C.J., Chang C.-M., McKnight G., Nutt S. (2011a), Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses, Journal of Applied Physics, 110(12): 124903, https://doi.org/10.1063/1.3665213

28. Naify C.J., Chang C.-M., McKnight G., Scheulen F., Nutt S. (2011b), Membrane-type metamaterials: Transmission loss of multi-celled arrays, Journal of Applied Physics, 109(10): 104902, https://doi.org/10.1063/1.3583656

29. Popa B.I., Zigoneanu L., Cummer S.A. (2011), Experimental acoustic ground cloak in air, Physical Review Letters, 106(25): 253901, https://doi.org/10.1103/PhysRevnLett.106.253901

30. Quan L., Ra’di Y., Sounas D., Alu A. (2018), Maximum Willis coupling in acoustic scatterers, Physical Review Letters, 120(25): 254301, https://doi.org/10.1103/PhysRevLett.120.254301

31. Quan L., Zhong X., Liu X., Gong X., Johnson P.A. (2014), Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control, Nature Communications, 5(1): 1–8, https://doi.org/10.1038/ncomms4188

32. Shanshan Y., Xiaoming Z., Gengkai H. (2008), Experimental study on negative effective mass in a 1D mass-spring system, New Journal of Physics, 10(4): 43020, https://doi.org/10.1088/1367-2630/10/4/043020

33. Shao C., Long H., Cheng Y., Liu X. (2019), Lowfrequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9(1): 1–8, https://doi.org/10.1038/s41598-019-49982-5

34. Shrestha M., Lu Z., Lau G.K. (2018), Transparent tunable acoustic absorber membrane using inkjetprinted PEDOT:PSS thin-film compliant electrodes, ACS Applied Materials and Interfaces, 10(46): 39942–39951, https://doi.org/10.1021/acsami.8b12368

35. Tian Y., Wei Q., Cheng Y., Liu X. (2017), Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Applied Physics Letters, 110(19): 191901, https://doi.org/10.1063/1.4983282

36. Wu X. et al. (2016), Low-frequency tunable acoustic absorber based on split tube resonators, Applied Physics Letters, 109(4): 43501, https://doi.org/10.1063/1.4959959

37. Wu X. et al. (2018), High-efficiency ventilated metamaterial absorber at low frequency, Applied Physics Letters, 112(10): 103505, https://doi.org/10.1063/1.5025114

38. Xia J.P., Sun H.X., Yuan S.Q. (2017), Modulating sound with acoustic metafiber bundles, Scientific Reports, 7(1): 8151, https://doi.org/10.1038/s41598-017-07232-6

39. Xiang X. et al. (2019), Ultra-open high-efficiency ventilated metamaterial absorbers with customized broadband performance, Applied Physics Letters, 112(10): 103505, https://doi.org/10.1063/1.5025114

40. Xiao S., Ma G., Li Y., Yang Z., Sheng P. (2015), Active control of membrane-type acoustic metamaterial by electric field, Applied Physics Letters, 106(9): 91904, https://doi.org/10.1063/1.4913999

41. Yang M., Chen S., Fu C., Sheng P. (2017), Optimal sound-absorbing structures, Materials Horizons, 4(4): 673–680, https://doi.org/10.1039/C7MH00129K

42. Yang M. et al. (2015), Sound absorption by subwavelength membrane structures: A geometric perspective, Comptes Rendus – Mecanique, 343(12): 635–644, https://doi.org/10.1016/j.crme.2015.06.008

43. Yang M., Ma G., Yang Z., Sheng P. (2013), Coupled membranes with doubly negative mass density and bulk modulus, Physical Review Letters, 110(13): 134301, https://doi.org/10.1103/PhysRevLett.110.134301

44. Yang M., Sheng P. (2017), Sound absorption structures: from porous media to acoustic metamaterials, Annual Review of Materials Research, 47: 83–114, https://doi.org/10.1146/annurev-matsci-070616-124032

45. Yang Z., Dai H.M., Chan N.H., Ma G.C., Sheng P. (2010), Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime, Applied Physics Letters, 96(4): 041906, https://doi.org/10.1063/1.3299007

46. Yang Z., Mei J., Yang M., Chan N.H., Sheng P. (2008), Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, 101(20): 204301, https://doi.org/10.1103/PhysRevLett.101.204301

47. Yu X., Lu Z., Cheng L., Cui F. (2017a), On the sound insulation of acoustic metasurface using a substructuring approach, Journal of Sound and Vibration, 401: 190–203, https://doi.org/10.1016/j.jsv.2017.04.042

48. Yu X., Lu Z., Cheng L., Cui F. (2017b), Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control, Journal of Sound and Vibration, 387: 114–126, https://doi.org/10.1016/j.jsv.2016.10.022

49. Yu X., Lu Z., Cui F., Cheng L., Cui Y. (2017c), Tunable acoustic metamaterial with an array of resonators actuated by dielectric elastomer, Extreme Mechanics Letters, 12: 37–40, https://doi.org/10.1016/j.eml.2016.07.003

50. Zhang Z., Cheng Y., Liu X. (2018a), Achieving acoustic topological valley-Hall states by modulating the subwavelength honeycomb lattice, Scientific Reports, 8(1): 16784, https://doi.org/10.1038/s41598-018-35214-9

51. Zhang Z. et al. (2018b), Directional acoustic antennas based on Valley-Hall topological insulators, Advanced Materials, 30(36): 1803229, https://doi.org/10.1002/adma.201803229