10.24425/aoa.2022.140729
Perfect Absorption for Modulus-Near-Zero Acoustic Metamaterial in Air or Underwater at Low-Frequency
References
Chen J., Huang H., Huo S., Tan Z., Xie X., Cheng J. (2018), Self-ordering induces multiple topological transitions for elastic waves in phononic crystals, Physical Review B, 98(1): 14302, doi: 10.1103/PhysRevB.98.014302.
Chen Y., Huang G., Zhou X., Hu G., Sun C.-T. (2014), Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model, The Journal of the Acoustical Society of America, 136(6): 2926–2934, doi: 10.1121/1.4901706.
Duan Y. et al. (2015), Theoretical requirements forbroadband perfect absorption of acoustic waves by ultra-thin elastic meta-films, Scientific Reports, 5(1): 12139, doi: 10.1038/srep12139.
Feng L. (2013), Modified impedance tube measurements and energy dissipation inside absorptive materials, Applied Acoustics, 74(12): 1480–1485, doi: 10.1016/j.apacoust.2013.06.013.
García-Chocano V.M., Christensen J., Sánchez-Dehesa J. (2014), Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics, Physical Review Letters, 112(14): 144301, doi: 10.1103/PhysRev Lett.112.144301.
He H. et al. (2018), Topological negative refraction of surface acoustic waves in a Weyl phononic crystal, Nature, 560(7716), 61–64, doi: 10.1038/s41586-018-0367-9.
Huang H.H., Sun C.T., Huang G.L. (2009), On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science, 47(4): 610–617, doi: 10.1016/j.ijengsci.2008.12.007.
Huang S., Fang X.,Wang X., Assouar B., Cheng Q., Li Y. (2018), Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Applied Physics Letters, 113(23): 233501, doi: 10.1063/1.506 3289.
Landi M., Zhao J., Prather W.E., Wu Y., Zhang L. (2018), Acoustic purcell effect for enhanced emission, Physical Review Letters, 120(11): 114301, doi: 10.1103/PhysRevLett.120.114301.
Lee S.H., Park C.M., Seo Y.M.,Wang Z.G., Kim C.K. (2009), Acoustic metamaterial with negative density, Physics Letters, Section A: General, Atomic and Solid State Physics, 373(48): 4464–4469, doi: 10.1016/j.physleta.2009.10.013.
Lee T., Nomura T., Dede E.M., Iizuka H. (2019), Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls, Physical Review Applied, 11(2): 24022, doi: 10.1103/PhysRevApplied.11.024022.
Li J., Chan C.T. (2004), Double-negative acoustic metamaterial, Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(5): 4, doi: 10.1103/PhysRevE.70.055602.
Li Y., Assouar B.M. (2016), Acoustic metasurfacebased perfect absorber with deep subwavelength thickness, Applied Physics Letters, 108(6): 63502, doi: 10.1063/1.4941338.
Liu J., Guo H.,Wang T. (2020a), A review of acoustic metamaterials and phononic crystals, Crystals, 10(4): 305, doi: 10.3390/cryst10040305.
Liu Y. et al. (2020b), Three-dimensional fractal structure with double negative and density-near-zero properties on a subwavelength scale, Materials and Design, 188: 108470, doi: 10.1016/j.matdes.2020.108470.
Liu Z. et al. (2000), Locally resonant sonic materials, Science, 289(5485): 1734–1736, doi: 10.1126/science.289.5485.1734.
Lu Z., Cui Y., Debiasi M. (2016), Active membranebased silencer and its acoustic characteristics, Applied Acoustics, 111: 39–48, doi: 10.1016/j.apacoust.2016.03.042.
Lu Z., Cui Y., Debiasi M., Zhao Z. (2015a), A tunable dielectric elastomer acoustic absorber, Acta Acustica United with Acustica, 101(4): 863–866, doi: 10.3813/AAA.918881.
Lu Z., Godaba H., Cui Y., Foo C.C., Debiasi M., Zhu J. (2015b), An electronically tunable duct silencer using dielectric elastomer actuators, The Journal of the Acoustical Society of America, 138(3): EL236–EL241, doi: 10.1121/1.4929629.
Lu Z., Shrestha M., Lau G.K. (2017), Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator, Applied Physics Letters, 110(18), 182901, doi: 10.1063/1.4982634.
Lu Z., Yu X., Lau S.K., Khoo B.C., Cui F. (2020), Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation, Applied Acoustics, 157: 107003, doi: 10.1016/j.apacoust.2019.107003.
Ma F., Wu J.H., Huang M. (2015), Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation, EPJ Applied Physics, 71(3): 30504, doi: 10.1051/epjap/2015150310.
Ma G., Yang M., Xiao S., Yang Z., Sheng P. (2014), Acoustic metasurface with hybrid resonances, Nature Materials, 13(9): 873–878, doi: 10.1038/nmat3994.
Mahjoob M.J., Mohammadi N., Malakooti S. (2009), An investigation into the acoustic insulation of triple-layered panels containing Newtonian fluids: theory and experiment, Applied Acoustics, 70(1): 165–171, doi: 10.1016/j.apacoust.2007.12.002.
Mei J., Ma G., Yang M., Yang Z., Wen W., Sheng P. (2012), Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Communications, 3(1): 1–7, doi: 10.1038/ncomms1758.
Melde K., Mark A.G., Qiu T., Fischer P. (2016), Holograms for acoustics, Nature, 537(7621): 518–522, doi: 10.1038/nature19755.
Naify C.J., Chang C.-M., McKnight G., Nutt S. (2011a), Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses, Journal of Applied Physics, 110(12): 124903, doi: 10.1063/1.3665213.
Naify C.J., Chang C.-M., McKnight G., Scheulen F., Nutt S. (2011b), Membrane-type metamaterials: Transmission loss of multi-celled arrays, Journal of Applied Physics, 109(10): 104902, doi: 10.1063/1.3583656.
Popa B.I., Zigoneanu L., Cummer S.A. (2011), Experimental acoustic ground cloak in air, Physical Review Letters, 106(25): 253901, doi: 10.1103/PhysRevnLett.106.253901.
Quan L., Ra’di Y., Sounas D., Alu A. (2018), Maximum Willis coupling in acoustic scatterers, Physical Review Letters, 120(25): 254301, doi: 10.1103/PhysRevLett.120.254301.
Quan L., Zhong X., Liu X., Gong X., Johnson P.A. (2014), Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control, Nature Communications, 5(1): 1–8, doi: 10.1038/ncomms4188.
Shanshan Y., Xiaoming Z., Gengkai H. (2008), Experimental study on negative effective mass in a 1D mass-spring system, New Journal of Physics, 10(4): 43020, doi: 10.1088/1367-2630/10/4/043020.
Shao C., Long H., Cheng Y., Liu X. (2019), Lowfrequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9(1): 1–8, doi: 10.1038/s41598-019-49982-5.
Shrestha M., Lu Z., Lau G.K. (2018), Transparent tunable acoustic absorber membrane using inkjetprinted PEDOT:PSS thin-film compliant electrodes, ACS Applied Materials and Interfaces, 10(46): 39942–39951, doi: 10.1021/acsami.8b12368.
Tian Y., Wei Q., Cheng Y., Liu X. (2017), Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Applied Physics Letters, 110(19): 191901, doi: 10.1063/1.4983282.
Wu X. et al. (2016), Low-frequency tunable acoustic absorber based on split tube resonators, Applied Physics Letters, 109(4): 43501, doi: 10.1063/1.4959959.
Wu X. et al. (2018), High-efficiency ventilated metamaterial absorber at low frequency, Applied Physics Letters, 112(10): 103505, doi: 10.1063/1.5025114.
Xia J.P., Sun H.X., Yuan S.Q. (2017), Modulating sound with acoustic metafiber bundles, Scientific Reports, 7(1): 8151, doi: 10.1038/s41598-017-07232-6.
Xiang X. et al. (2019), Ultra-open high-efficiency ventilated metamaterial absorbers with customized broadband performance, Applied Physics Letters, 112(10): 103505, doi: 10.1063/1.5025114.
Xiao S., Ma G., Li Y., Yang Z., Sheng P. (2015), Active control of membrane-type acoustic metamaterial by electric field, Applied Physics Letters, 106(9): 91904, doi: 10.1063/1.4913999.
Yang M., Chen S., Fu C., Sheng P. (2017), Optimal sound-absorbing structures, Materials Horizons, 4(4): 673–680, doi: 10.1039/C7MH00129K.
Yang M. et al. (2015), Sound absorption by subwavelength membrane structures: A geometric perspective, Comptes Rendus – Mecanique, 343(12): 635–644, doi: 10.1016/j.crme.2015.06.008.
Yang M., Ma G., Yang Z., Sheng P. (2013), Coupled membranes with doubly negative mass density and bulk modulus, Physical Review Letters, 110(13): 134301, doi: 10.1103/PhysRevLett.110.134301.
Yang M., Sheng P. (2017), Sound absorption structures: from porous media to acoustic metamaterials, Annual Review of Materials Research, 47: 83–114, doi: 10.1146/annurev-matsci-070616-124032.
Yang Z., Dai H.M., Chan N.H., Ma G.C., Sheng P. (2010), Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime, Applied Physics Letters, 96(4): 041906, doi: 10.1063/1.3299007.
Yang Z., Mei J., Yang M., Chan N.H., Sheng P. (2008), Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, 101(20): 204301, doi: 10.1103/PhysRevLett.101.204301.
Yu X., Lu Z., Cheng L., Cui F. (2017a), On the sound insulation of acoustic metasurface using a substructuring approach, Journal of Sound and Vibration, 401: 190–203, doi: 10.1016/j.jsv.2017.04.042.
Yu X., Lu Z., Cheng L., Cui F. (2017b), Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control, Journal of Sound and Vibration, 387: 114–126, doi: 10.1016/j.jsv.2016.10.022.
Yu X., Lu Z., Cui F., Cheng L., Cui Y. (2017c), Tunable acoustic metamaterial with an array of resonators actuated by dielectric elastomer, Extreme Mechanics Letters, 12: 37–40, doi: 10.1016/j.eml.2016.07.003.
Zhang Z., Cheng Y., Liu X. (2018a), Achieving acoustic topological valley-Hall states by modulating the subwavelength honeycomb lattice, Scientific Reports, 8(1): 16784, doi: 10.1038/s41598-018-35214-9.
Zhang Z. et al. (2018b), Directional acoustic antennas based on Valley-Hall topological insulators, Advanced Materials, 30(36): 1803229, doi: 10.1002/adma.201803229.
DOI: 10.24425/aoa.2022.140729