10.24425/aoa.2022.142898
Energy Analysis of Cavitation Bubbles Under Dual-Frequency Acoustic Excitation
References
Brotchie A., Grieser F., Ashokkumar M. (2010), Characterization of acoustic cavitation bubbles in different sound fields, Journal of Physical Chemistry B, 114(34): 11010–11016, doi: 10.1021/jp105618q.
Coussios C.C., Roy R.A. (2008), Applications of acoustics and cavitation to noninvasive therapy and drug delivery, Annual Review of Fluid Mechanics, 2008, 40(1): 395–420, doi: 10.1146/annurev.fluid.40.111406.102116.
Guédra M., Inserra C., Gilles B. (2017), Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation, Ultrasonics Sonochemistry, 38(1): 298–305, doi: 10.1016/j.ultsonch.2017.03.028.
Holzfuss J., Rüggeberg M., Mettin R. (1998), Boosting sonoluminescence, Physical Review Letters, 81(9): 1961–1964, doi: 10.1103/PhysRevLett.81.1961.
Huang X.T., Zhou C.H., Suo Q.Y., Zhang L.T., Wang S.H. (2018), Experimental study on viscosity reduction for residual oil by ultrasonic, Ultrasonics Sonochemistry, 41(1): 661–669, doi: 10.1016/j.ultsonch.2017.09.021.
Kanthale P.M., Brotchie A., Ashokkumar M., Grieser F. (2008), Experimental and theoretical investigations on sonoluminescence under dual frequency conditions, Ultrasonics Sonochemistry, 15(4): 629–635, doi: 10.1016/j.ultsonch.2007.08.006.
Koda S., Kimura T., Kondo T., Mitome H. (2003), A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrasonics Sonochemistry, 10(3): 149–156, doi: 10.1016/S1350-4177(03)00084-1.
Krefting D., Mettin R., Lauterborn W. (2002), Two-frequency driven single-bubble sonoluminescence, Journal of the Acoustical Society of America, 112(5): 1918–1927, doi: 10.1121/1.1509427.
Loske A.M., Prieto F.E., Fernández F., Cauwelaert J.V. (2002), Tandem shock wave cavitation enhancement for extracorporeal lithotripsy, Physics in Medicine and Biology, 47(22): 3945-3957, doi: 10.1088/ 0031-9155/47/22/303.
Lv L., Zhang Y. X., Wang L.Y. (2020), Effects of liquid compressibility on the dynamics of ultrasound contrast agent microbubbles, Fluid Dynamics Research, 52(5): 1–17, doi: 10.1088/1873-7005/abb09b.
Mason T.J. (2016), Ultrasonic cleaning: An historical perspective, Ultrasonics Sonochemistry, 29: 519–523, doi: 10.1016/j.ultsonch.2015.05.004.
Merouani S., Hamdaoui O., Rezgui Y., Guemini M.(2014), Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical
parameters, Ultrasonics, 54(1): 227–232, doi: 10.1016/j.ultras.2013.04.014.
Mettin R., Akhatov I., Parlitz U., Ohl C.D., Lauterborn W. (1997), Bjerknes forces between small cavitation bubbles in a strong acoustic field, Physical Review E, 56(3): 2924–2931, doi: 10.1103/PhysRevE.56.2924.
Moholkar V.S. (2009), Mechanistic optimization of a dual frequency sonochemical reactor, Chemical Engineering Science, 64(24): 5255–5267, doi: 10.1016/j.ces.2009.08.037.
Moshaii A., Sadighi-Bonabi R. (2004), Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble, Physical Review E, 70: 016304, doi: 10.1103/physreve.70.016304.
Suo D.J., Govind B., Zhang S.Q., Jing Y. (2018), Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound, Ultrasonics Sonochemistry, 41: 419–426, doi: 10.1016/j.ultsonch.2017.10.004.
Tatake P.A., Pandit A.B. (2002), Modelling and experimental investigation into cavity dynamics and cavitational yield: Influence of dual frequency ultrasound sources, Chemical Engineering Science, 57(22): 4987–4995, doi: 10.1016/S0009-2509(02)00271-3.
Tinguely M., Obreschkow D., Kobel P., Dorsaz N., Bosset A., Farhat M. (2012), Energy partition at the collapse of spherical cavitation bubbles, Physical Review E, 86: 046315, doi: 10.1103/Phys-RevE.86.046315.
Waldo N.B., Vecitis C.D. (2018), Combined effects of phase-shift and power distribution on efficiency of dual high-frequency sonochemistry, Ultrasonics Sonochemistry, 41(1): 100–108, doi: 10.1016/j.ultsonch.2017.09.010.
Yang X., Church C.C. (2005), A model for the dynamics of gas bubbles in soft tissue, The Journal of the Acoustical Society of America, 118(6): 3595–3606, doi: 10.1121/1.2118307.
Yeh C.K., Su S.Y., Shen C.C., Li M.L. (2008), Dual high-frequency difference excitation for contrast detection, IEEE Transactions on Ultrasonics Ferroelectrics
and Frequency Control, 55(10): 2164–2175, doi: 10.1109/TUFFC.916.
Zhang Y.N., Billson D., Li S.C. (2015), Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles, International Communications in Heat and Mass Transfer, 66: 167–171, doi: 10.1016/j.icheatmasstransfer.2015.05.026.
Zhang Y.N., Du X.Z., Xian H.Z., Wu Y.L. (2015), Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency, Ultrasonics Sonochemistry, 23(1): 16–20, doi: 10.1016/j.ultsonch.2014.07.021.
Zhang Y.N., Zhang Y.N., Li S.C. (2017), Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation, Ultrasonics Sonochemistry, 35(Part A): 431–439, doi: 10.1016/j.ultsonch.2016.10.022.
Zupanc M., Pandur Ž., Perdih T.S., Stopar D., Petkovšek M., Dular M. (2016), Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research, Ultrasonics Sonochemistry, 57: 147–165, doi: 10.1016/j.ultsonch.2019.05.009.
DOI: 10.24425/aoa.2022.142898