10.24425/aoa.2023.145229
Study on Chinese Speech Intelligibility Under Different Low-Frequency Characteristics of Reverberation Time Using a Hybrid Method
References
Adelman-Larsen N.W. (2015), Possible acoustic design goals in very large venues hosting live music concerts, Auditorium Acoustics, 37(3): 308–316.
Barron M. (2010), Auditorium Acoustics and Architectural Design, 2nd ed., Spon Press, London and New York.
Beranek L.L. (1962), Music, Acoustics and Architecture, Wiley, New York.
Beranek L.L. (1996), Concert and Opera Halls: How They Sound, Acoustical Society of America, New York.
Beranek L.L. (2010), Listening to the acoustics in concert halls, [in:] Proceedings of the International Symposium on Room Acoustics (ISRA 2010), Melbourne.
Botteldooren D. (1995), Finite-difference time-domain simulation of low-frequency room acoustic problems, The Journal of the Acoustical Society of America, 98(6): 3302–3308, doi: 10.1121/1.413817.
Fuchs H.V., Steinke G. (2015), Requirements for low-frequency reverberation in spaces for music: Part 2: Auditoria for performances and recordings, Psychomusicology: Music, Mind, and Brain, 25(3): 282–293, doi: 10.1037/pmu0000089.
GB (1995), GB 15508-1995, Acoustics – Speech articulation testing method [in Chinese], Standard of PR China.
GB (2010), GB 50118-2010, Code for design of sound insulation of civil buildings [in Chinese], Standard of PR China.
GB/T (2005), GB/T 50356-2005, Code for architectural acoustical design of theater, cinema and multi-use auditorium [in Chinese], Standard of PR China.
Gelfand S.A. (1998), Hearing: An Introduction to Psychological and Physiological Acoustics, Marcel Dekker, New York.
JGJ/T (2012), JGJ/T 131-2012, Specification for acoustical design and measurement of gymnasium and stadium [in Chinese], Standard of PR China.
Kowalczyk K., van Walstijn M. (2008), Modeling frequency-dependent boundaries as digital impedance filters in FDTD and K-DWM room acoustics simulations, Journal of the Audio Engineering Society, 56(7/8): 569–584, https://www.aes.org/e-lib/browse.cfm?elib=14401.
Oxenham A.J., Plack C.J. (1998), Suppression and the upward spread of masking, The Journal of the Acoustical Society of America, 104(6): 3500–3510, doi: 10.1121/1.423933.
Oxnard S. (2018), Investigating the stability of frequency-dependent locally reacting surface boundary conditions in numerical acoustic models, The Journal of the Acoustical Society of America, 143(4): EL266–EL270, doi: 10.1121/1.5030917.
Peng J., Lau S.K., Zhao Y. (2020), Comparative study of acoustical indices and speech perception of students in two primary school classrooms with an acoustical treatment, Applied Acoustics, 164: 107297, doi: 10.1016/j.apacoust.2020.107297.
Sakamoto S., Nagatomo H., Ushiyama A., Tachibana H. (2008), Calculation of impulse responses and acoustic parameters in a hall by the finite-difference time-domain method, Acoustical Science and Technology, 29(4): 256–265, doi: 10.1250/ast.29.256.
Southern A., Siltanen S., Murphy D.T., Savioja L. (2013), Room impulse response synthesis and validation using a hybrid acoustic model, IEEE Transactions on Audio, Speech, and Language Processing, 21(9): 1940–1952, doi: 10.1109/TASL.2013.2263139.
Wu S., Peng J., Bi Z. (2014), Chinese speech intelligibility in low frequency reverberation and noise in a simulated classroom, Acta Acustica united with Acustica, 100(6): 1067–1072, doi: 10.3813/AAA.918786.
Wu Z. (1964), The spectrographic analysis of the vowels and consonants in standard colloquial Chinese [in Chinese], Acta Acustica, 1(1): 33–40, doi: 10.15949/j.cnki.0371-0025.1964.01.006.
Xu S., Peng J., Xiao Y., Huang W. (2021), The effect of low frequency reverberation on Chinese speech intelligibility in two classrooms, Applied Acoustics, 182: 108241, doi: 10.1016/j.apacoust.2021.108241.
Zha X., Lyu H. (2020), Analysis and improvement of classroom acoustic environment [in Chinese], Technical Acoustics, 39(4): 461–467, doi: 10.16300/j.cnki.1000-3630.2020.04.014.
DOI: 10.24425/aoa.2023.145229