10.24425/aoa.2023.144269
Three-Dimensional Freehand Ultrasound Strain Elastography Based on the Assessment of Endogenous Motion: Phantom Study
References
Abeysekera J., Rohling R., Salcudean S. (2015), Vibro-elastography: Absolute elasticity from motorized 3D ultrasound measurements of harmonic motion vectors, [in:] 2015 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, doi: 10.1109/ULTSYM.2015.0201.
Bae U., Dighe M., Shamdasani V., Minoshima S., Dubinsky T., Kim Y. (2006), 6F-6 thyroid elastography using carotid artery pulsation: A feasibility study, [in:] 2006 IEEE Ultrasonics Symposium, pp. 614–617, doi: 10.1109/ULTSYM.2006.160.
Barr R.G. et al. (2017), WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 5. Prostate, Ultrasound in Medicine and Biology, 43(1): 27–48, doi: 10.1016/j.ultrasmedbio.2016.06.020.
Bercoff J., Sinkus R., Tanter M., Fink M. (2004), 3D ultrasound-based dynamic and transient elastography: First in vitro results, [in:] IEEE International Ultrasonics Symposium, 1: 28–31, doi: 10.1109/ULTSYM.2004.1417660.
Burlew M.M., Madsen E.L., Zagzebski J.A., Banjavic R.A., Sum S.W. (1980), A new ultrasound tissue-equivalent material, Radiology, 134(2): 517–520, doi: 10.1148/radiology.134.2.7352242.
Chen Z., Chen Y., Huang Q. (2016), Development of a wireless and near real-time 3D ultrasound strain imaging system, IEEE Transactions on Biomedical Circuits and Systems, 10(2): 394–403, doi: 10.1109/TBCAS.2015.2420117.
Cosgrove D. et al. (2017), WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 4. Thyroid, Ultrasound in Medicine & Biology, 43(1): 4–26, doi: 10.1016/j.ultrasmedbio.2016.06.022.
Dickinson R.J., Hill C.R. (1982), Measurement of soft tissue motion using correlation between A-scans, Ultrasound in Medicine & Biology, 8(3): 263–271, doi: 10.1016/0301-5629(82)90032-1.
Dietrich C.F. et al. (2017), Strain elastography – How to do it?, Ultrasound International Open, 3(4): E137–E149, doi: 10.1055/s-0043-119412.
Gelman S. et al. (2020), Endogenous motion of liver correlates to the severity of portal hypertension, World Journal of Gastroenterology, 26(38): 5836–5848, doi: 10.3748/wjg.v26.i38.5836.
Gilja O.H., Hausken T., Olafsson S., Matre K., Ødegaard S. (1998), In vitro evaluation of three-dimensional ultrasonography based on magnetic scan head tracking, Ultrasound in Medicine & Biology, 24(8): 1161–1167, doi: 10.1016/S0301-5629(98)00098-2.
Hall T.J., Bilgen M., Insana M.F., Krouskop T.A. (1997), Phantom materials for elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(6): 1355–1365, doi: 10.1109/58.656639.
Hashemi H.S., Rivaz H. (2017), Global time-delay estimation in ultrasound elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(10): 1625–1636, doi: 10.1109/TUFFC.2017.2717933.
Havre R.F. et al. (2008), Freehand real-time elastography: Impact of scanning parameters on image quality and in vitro intra- and interobserver validations, Ultrasound in Medicine & Biology, 34(10): 1638–1650, doi: 10.1016/j.ultrasmedbio.2008.03.009.
Hendriks G.A.G.M., Holländer B., Menssen J., Milkowski A., Hansen H.H.G., de Korte C.L. (2016), Automated 3D ultrasound elastography of the breast: A phantom validation study, Physics in Medicine & Biology, 61(7): 2665–2679, doi: 10.1088/0031-9155/61/7/2665.
Housden R.J., Gee A.H., Treece G.M., Prager R.W. (2010), 3-D ultrasonic strain imaging using freehand scanning and a mechanically-swept probe – correspondence, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(2): 501–506, doi: 10.1109/TUFFC.2010.1431.
Huang Q., Xie B., Ye P., Chen Z. (2015), Correspondence – 3-D ultrasonic strain imaging based on a linear scanning system, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2): 392–400, doi: 10.1109/TUFFC.2014.006665.
Kolen A.F., Miller N.R., Ahmed E.E., Bamber J.C. (2004), Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo, Physics in Medicine & Biology, 49(18): 4187–4206, doi: 10.1088/0031-9155/49/18/001.
Lee F.-F., He Q., Luo J. (2018), Electromagnetic tracking-based freehand 3D quasi-static elastography with 1D linear array: A phantom study, Physics in Medicine & Biology, 63(24): 245006, doi: 10.1088/1361-6560/aaefae.
Lindop J.E., Treece G.M., Gee A.H., Prager R.W. (2006), 3D elastography using freehand ultrasound, Ultrasound in Medicine & Biology, 32(4): 529–545, doi: 10.1016/j.ultrasmedbio.2005.11.018.
Lorensen W.E., Cline H.E. (1987), Marching cubes: A high resolution 3D surface construction algorithm, [in:] Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 21(4): 163–169, doi: 10.1145/37401.37422.
Luo S., Kim E.-H., Dighe M., Kim Y. (2009), Screening of thyroid nodules by ultrasound elastography using diastolic strain variation, [in:] 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4420–4423, doi: 10.1109/IEMBS.2009.5332744.
Madsen E.L., Frank G.R., Dong F. (1998), Liquid or solid ultrasonically tissue mimicking materials with very low scatter, Ultrasound in Medicine & Biology, 24(4): 535–542, doi: 10.1016/s0301-5629(98)00013-1.
Mai J.J., Insana M.F. (2002), Strain imaging of internal deformation, Ultrasound in Medicine & Biology, 28(11–12): 1475–1484, doi: 10.1016/S0301-5629(02)00645-2.
Mozaffari M.H., Lee W.-S. (2017), Freehand 3-D ultrasound imaging: A systematic review, Ultrasound in Medicine & Biology, 43(10): 2099–2124, doi: 10.1016/j.ultrasmedbio.2017.06.009.
Richards M.S., Barbone P.E., Oberai A.A. (2009), Quantitative three-dimensional elasticity imaging from quasi-static deformation: A phantom study, Physics in Medicine & Biology, 54(3): 757–779, doi: 10.1088/0031-9155/54/3/019.
Rivaz H., Boctor E.M., Choti M.A., Hager G.D. (2011), Real-time regularized ultrasound elastography, IEEE Transactions on Medical Imaging, 30(4): 928–945, doi: 10.1109/TMI.2010.2091966.
Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2016), Initial results of liver tissue characterization using endogenous motion tracking method, [in:] Conference Proceedings Biomedical Engineering, pp. 132–137, http://biomed.ktu.lt/index.php/BME/article/viewFile/3392/150.
Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2018), Development of radiofrequency ultrasound based method for elasticity characterization using low frequency endogenous motion: Phantom study, [in:] IFMBE Proceedings, Eskola H., Väisänen O., Viik J., Hyttinen J. [Eds.], Springer Singapore, pp. 474–477, doi: 10.1007/978-981-10-5122-7_119.
Sakalauskas A., Jurkonis R., Gelman S., Lukoševicius A., Kupcinskas L. (2019), Investigation of radiofrequency ultrasound-based fibrotic tissue strain imaging method employing endogenous motion: Endogenous motion-based strain elastography, Journal of Ultrasound in Medicine, 38(9): 2315–2327, doi: 10.1002/jum.14925.
Tristam M., Barbosa D.C., Cosgrove D.O., Nassiri D.K., Bamber J.C., Hill C.R. (1986), Ultrasonic study of in vivo kinetic characteristics of human tissues, Ultrasound in Medicine & Biology, 12(12): 927–937, doi: 10.1016/0301-5629(86)90061-x.
Wang Y., Spangler C.H., Tai B.L., Shih A.J. (2013), Positional accuracy and transmitter orientation of the 3D electromagnetic tracking system, Measurement Science and Technology, 24(10): 105105–105113, doi: 10.1088/0957-0233/24/10/105105.
Wells P.N.T., Liang H.-D. (2011), Medical ultrasound: Imaging of soft tissue strain and elasticity, Journal of the Royal Society Interface, 8(64): 1521–1549, doi: 10.1098/rsif.2011.0054.
Wilson L.S., Robinson D.E. (1982), Ultrasonic measurement of small displacements and deformations of tissue, Ultrasonic Imaging, 4(1): 71–82, doi: 10.1016/0161-7346(82)90006-2.
Zambacevičienė M., Jurkonis R., Gelman S., Sakalauskas A. (2019), RF ultrasound based estimation of pulsatile flow induced microdisplacements in phantom, [in:] World Congress on Medical Physics and Biomedical Engineering 2018, Lhotska L., Sukupova L., Lackovic I., Ibbott G.S. [Eds.], Springer Singapore, pp. 601–605, doi: 10.1007/978-981-10-9035-6_112.
DOI: 10.24425/aoa.2023.144269