10.24425/aoa.2023.146644
Removal of Fouling from Steel Plate Surfaces Based on Multi-Frequency Eco-Friendly Ultrasonic Guided Wave Technology
References
Abu-Zaid M. (2000), A fouling evaluation system for industrial heat transfer equipment subject to fouling, International Communications in Heat and Mass Transfer, 27(6): 815–824, doi: 10.1016/S0735-1933(00)00162-7.
Avvaru B., Pandit A.B. (2008), Experimental investigation of cavitational bubble dynamics under multifrequency system, Ultrasonics Sonochemistry, 15(4): 578–589, doi: 10.1016/j.ultsonch.2007.06.012.
Chen D., Weavers L.K., Walker H.W., Lenhart J.J. (2006), Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles, Journal of Membrane Science, 276(1–2): 135–144, doi: 10.1016/j.memsci.2005.09.039.
Deptuła A., Kunderman D., Osiński P., Radziwanowska U., Włostowski R. (2016), Acoustic diagnostics applications in the study of the technical condition of the combustion engine, Archives of Acoustics, 41(2): 345–350, doi: 10.1515/aoa-2016-0036.
Feng R., Zhao Y., Zhu C., Mason T.J. (2002), Enhancement of ultrasonic cavitation yield by multifrequency sonication, Ultrasonics Sonochemistry, 9(5): 231–236, doi: 10.1016/S1350-4177(02)00083-4.
Gholivand Kh., Khosravi M., Hosseini S.G., Fathollahi M. (2010), A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces, Applied Surface Science, 256(24): 7457–7461, doi: 10.1016/j.apsusc.2010.05.090.
Habibi H. et al. (2016), Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration, Cold Regions Science and Technology, 128: 1–12, doi: 10.1016/j.coldregions.2016.04.012.
Inoue D., Hayashi T. (2015), Transient analysis of leaky Lamb waves with a semi-analytical finite element method, Ultrasonics, 62: 80–88, doi: 10.1016/j.ultras.2015.05.004.
Kim J.O., Kim J.H., Choi S. (1999), Vibroacoustic characteristics of ultrasonic cleaners, Applied Acoustics, 58(2): 211–228, doi: 10.1016/S0003-682X(98)00039-5.
Kovarik V. (1995), Distributional concept of the elastic-viscoelastic correspondence principle, Journal of Applied Mechanics, 62(4): 847–852, doi: 10.1115/1.2896010.
Krautkrämer J., Krautkrämer H. (2013), Ultrasonic Testing of Materials, 4th ed., Springer Science & Business Media, Berlin, Heidelberg.
Krzyżanowski M., Yang W., Sellars C.M., Beynon J.H. (2013), Analysis of mechanical descaling: and modelling approach experimental, Metal Science Journal, 19(1): 109–116, doi: 10.1179/026708303225008545.
Kudryashova O.B., Vorozhtsov A., Danilov P. (2019), Deagglomeration and coagulation of particles in liquid metal under ultrasonic treatment, Archives of Acoustics, 44(3): 543–549, doi: 10.24425/aoa.2019.129269.
Legay M., Allibert Y., Gondrexon N., Boldo P., Le Person S. (2013), Experimental investigations of fouling reduction in an ultrasonically-assisted heat exchanger, Experimental Thermal and Fluid Science, 46: 111–119, doi: 10.1016/j.expthermflusci.2012.12.001.
MacAdam J., Parsons S.A. (2004), Calcium carbonate scale formation and control, Review in Environmental Science & Bio/Technology, 3: 159–169, doi: 10.1007/s11157-004-3849-1.
Mason T.J. (2016), Ultrasonic cleaning: An historical perspective, Ultrasonics Sonochemistry, 29: 519–523, doi: 10.1016/j.ultsonch.2015.05.004.
Mazzotti M., Marzani A., Bartoli I. (2014), Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape, Ultrasonics, 54(1): 408–418, doi: 10.1016/j.ultras.2013.06.011.
Nguyen T.T., Asakura Y., Koda S., Yasuda K. (2017), Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency, Ultrasonics Sonochemistry, 39: 301–306, doi: 10.1016/j.ultsonch.2017.04.037.
Pecnik B., Hocevar M., Širok B., Bizjan B. (2016), Scale deposit removal by means of ultrasonic cavitation, Wear, 356: 45–52, doi: 10.1016/j.wear.2016.03.012.
Qu Z. et al. (2019), A descaling methodology for a water-filled pipe based on leaky guided ultrasonic waves cavitation, Chemical Engineering Research and Design, 146: 470–477, doi: 10.1016/j.cherd.2019.04.027.
Rizzo F.J., Shippy D.J. (1971), An application of the correspondence principle of linear viscoelasticity theory, SIAM Journal on Applied Mathematics, 21(2): 321–330, doi: 10.1137/0121034.
Sato H., Lebedev M., Akedo J. (2007), Theoretical investigation of guide wave flowmeter, Japanese Journal of Applied Physics, 46(7S): 4521, doi: 10.1143/JJAP.46.4521.
Shchukin D.G., Skorb E., Belova V., Moehwald H. (2011), Ultrasonic cavitation at solid surfaces, Advanced Materials, 23: 1922–1934, doi: 10.1002/adma.201004494.
Shima A. (1971), The natural frequencies of two spherical bubbles oscillating in water, Journal of Fluids Engineering, 93(3): 426–431, doi: 10.1115/1.3425268.
Somerscales E.F.C. (1990), Fouling of heat transfer surfaces: An historical review, Heat Transfer Engineering, 11(1): 19–36, doi: 10.1080/01457639008939720.
Suo D., Govind B., Zhang S., Jing Y. (2018), Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound, Ultrasonics Sonochemistry, 41: 419–426, doi: 10.1016/j.ultsonch.2017.10.004.
Suo D., Guo S., Lin W., Jiang X., Jing Y. (2015), Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: An in vitro study, Physics in Medicine & Biology, 60(18): 7403–7418, doi: 10.1088/0031-9155/60/18/7403.
Suslick K.S. et al. (1999), Acoustic cavitation and its chemical consequences, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1751): 335–353, doi: 10.1098/rsta.1999.0330.
Wu J.-H., Chao L. (2011), Effects of entrained air manner on cavitation damage, Journal of Hydrodynamics, 23(3): 333–338, doi: 10.1016/S1001-6058(10)60120-5.
Zhu R., Huang G.L., Huang H.H., Sun C.T. (2011), Experimental and numerical study of guided wave propagation in a thin metamaterial plate, Physics Letters A, 375(30–31): 2863–2867, doi: 10.1016/j.physleta.2011.06.006.
DOI: 10.24425/aoa.2023.146644