10.24425/aoa.2023.145242
Design and Experiments of A New Internal Cone Type Traveling Wave Ultrasonic Motor
References
Ceponis A., Mažeika D., Vasiljev P. (2020), Flat cross-shaped piezoelectric rotary motor, Applied Sciences, 10(14): 5022, doi: 10.3390/app10145022.
Li H., Deng J., Zhang S., Yu H., Liu Y. (2021), Design and experiment of a three-feet inear ultrasonic motor using third bending hybrid modes, Sensors and Actuators A: Physical, 331: 112990, doi: 10.1016/j.sna.2021.112990.
Li S. et al. (2019), Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials, Tribology International, 136: 412–420, doi: 10.1016/j.triboint.2019.03.072.
Liu R. et al. (2022), A precision positioning rotary stage driven by multilayer piezoelectric stacks, Precision Engineering, 76: 226–236, doi: 10.1016/j.precisioneng.2022.03.013.
Lu D., Lin Q., Chen B., Jiang C., Hu X. (2020), A single-modal linear ultrasonic motor based on multi vibration modes of PZT ceramics, Ultrasonics, 107: 106158, doi: 10.1016/j.ultras.2020.106158.
Makarem S., Delibas B., Koc B. (2021), Datadriven tuning of PID controlled piezoelectric ultrasonic motor, Actuators, 10(7): 148, doi: 10.3390/act10070148.
Mashimo T., Oba Y. (2022), Performance improvement of micro-ultrasonic motors using the thickness shear mode piezoelectric elements, Sensors and Actuators A: Physical, 335: 113347, doi: 10.1016/j.sna.2021.113347.
Mishra J.P., Xu Q., Yu X., Jalili M. (2018), Precision position tracking for piezoelectric-driven motion system using continuous third-order sliding mode control, [in:] IEEE/ASME Transactions on Mechatronics, 23(4): 1521–1531, doi: 10.1109/TMECH.2018.2853737.
Oh J.-H. et al. (2009), Design and performances of high torque ultrasonic motor for application of automobile, Journal of Electroceramics, 22(1): 150–155, doi: 10.1007/s10832-008-9434-1.
Olsson P., Nysjö F., Carlbom I.B., Johansson S. (2016), Comparison of walking and traveling-wave piezoelectric motors as actuators in kinesthetic haptic devices, [in:] IEEE Transactions on Haptics, 9(3): 427–431, doi: 10.1109/TOH.2016.2537803.
Puoza J.C., Sakthivelsamy R. (2021), Ultrasonic motors structural design and tribological performance – A review, Tribology Online, 16(4): 286–298, doi: 10.2474/trol.16.286.
Ryndzionek R., Sienkiewicz Ł. (2021), A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors, Ultrasonics, 116: 106471, doi: 10.1016/j.ultras.2021.106471.
Soedel W. (2004), Vibrations of Shells and Plates, CRC Press, USA.
Tian X., Liu Y., Deng J., Wang L., Chen W. (2020), A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance, and future work perspectives, Sensors and Actuators A: Physica, 306: 111971, doi: 10.1016/j.sna.2020.111971.
Wang H., Pan Z., Zhu H., Guo Y. (2020), Prepressure influences on the traveling wave ultrasonic motor performance: A theoretical analysis with experimental verification, AIP Advances, 10(11): 115211, doi: 10.1063/5.0028282.
Wang P., Xu Q. (2017), Design and testing of a flexure-based constant-force stage for biological cell micromanipulation, [in:] IEEE Transactions on Automation Science and Engineering, 15(3): 1114–1126, doi: 10.1109/TASE.2017.2733553.
Xu D., Yang W., Zhang X., Yu S. (2021), Design and performance evaluation of a single-phase driven ultrasonic motor using bending-bending vibrations, Micromachines, 12(8): 853, doi: 10.3390/mi12080853.
Zhang P., Niu J., Zhang X., Mao S., Liu J., Yang B. (2022), Thick film ultrasonic micromotor based on chemical mechanical thinning and polishing process, [in:] IEEE Electron Device Letters, 43(9): 1547–1550, doi: 10.1109/LED.2022.3195349.
Zhao C. (2011), Ultrasonic Motors: Technologies and Applications, Springer, China.
Zhao Y., Yuan S., Chu X., Gao S., Zhong Z., Zhu C. (2016), Ultrasonic micro-motor with multilayer piezoelectric ceramic and chamfered driving tips, Review of Scientific Instruments, 87(9): 095108, doi: 10.1063/1.4963662.
DOI: 10.24425/aoa.2023.145242