10.24425/aoa.2023.146814
Investigation of the Acoustic Properties of a Metamaterial with a Multi-Ring Structure
References
Chen M., Meng D., Jiang H., Wang, Y. (2018), Investigation on the band gap and negative properties of concentric ring acoustic metamaterial, Shock and Vibration, 2018: 369858, doi: 10.1155/2018/1369858.
Duan H., Shen X., Wang E., Yang F., Zhang X., Yin Q. (2021), Acoustic multi-layer Helmholtz resonance metamaterials with multiple adjustable absorption peaks, Applied Physics Letter, 118(24): 241904, doi: 10.1063/5.0054562.
Engel Z., Piechowicz J., Pleban D., Stryczniewicz L. (2009), Industrial Halls, Machines and Devices – Selected Vibroacoustic Problems [in Polish: Hale przemysłowe, maszyny i urzadzenia – wybrane problem wibroakustyczne], Centralny Instytut Ochrony Pracy – Panstwowy Instytut Badawczy, Warszawa.
Gao N., Zhang Z., Deng J., Guo X., Cheng B., Hou H. (2022), Acoustic metamaterials for noise reduction: A review, Advanced Materials Technologies, 7(6): 2100698, doi: 10.1002/admt.202100698.
GUS (Central Statistical Office) (2021), Working Conditions in 2020, Warsaw, https://stat.gov.pl/en/topics/labour-market/working-conditions-accidents-at-work/working-conditions-in-2020,1,15.html (access 11.10.2023).
Howard C.Q., Cazzolato B.S. (2017), Acoustic Analyses Using Matlab RO and Ansys RO, CRC Press.
Iannace G., Ciaburro G., Trematerra A. (2021), Metamaterials acoustic barrier, Applied Acoustics, 181: 108172, doi: 10.1016/j.apacoust.2021.108172.
Liu X., Li X., Ren Z. (2020), Miniaturized spiral metamaterial array for a ventilated broadband acoustic absorber, Shock and Vibration, 2020: 8887571, doi: 10.1155/2020/8887571.
Mahesh K., Mini R.S. (2019), Helmholtz resonator based metamaterials for sound manipulation, [in:] Journal of Physics: Conference Series, 1355: 012031, doi: 10.1088/1742-6596/1355/1/012031.
Mazur K., Wrona S., Pawełczyk M. (2018), Design and implementation of multichannel global active structural acoustic control for a device casing, Mechanical System and Signal Processing, 98: 877–889, doi: 10.1016/j.ymssp.2017.05.025.
Morzyński L., Szczepański G. (2018), Double panel structure for active control of noise transmission, Archives of Acoustics, 43(4): 689–696, doi: 10.24425/aoa.2018.125162.
Nakayama M. et al. (2021), A practically designed acoustic metamaterial sheet with two-dimensional connection of local resonators for sound insulation applications, Journal of Applied Physics, 129(10): 105106, doi: 10.1063/5.0041738.
Pennec Y., Djafari-Rouhani B., Vasseur J.O., Khelif A., Deymier P.A. (2004), Tunable filtering and demultiplexing in phononic crystals with hollow cylinders, Physical Review E, 69(4): 046608, doi: 10.1103/physreve.69.046608.
Radosz J. (2019), Acoustic performance of noise barrier based on sonic crystals with resonant elements, Applied Acoustics, 155: 492–499, doi: 10.1016/j.apacoust.2019.06.003.
Sikora J. (2011), Rubber Layers in Vibroacoustic Protection Solutions [in Polish: Warstwy gumowe w rozwiązaniach zabezpieczen wibroakustycznych], Wydawnictwa AGH, Kraków.
Sztyler B., Strumiłło P. (2022), Acoustic metamaterials, Archives of Acoustics, 47(1): 3–14, doi: 10.24425/aoa.2022.140727.
Wang P., Chen T.-N., Yu K.-P., Wang X.-P. (2012), Tunable and large gaps in a two-layer semi-ring structure, Physica Scripta, 85(6): 065402, doi: 10.1088/0031-8949/85/06/065402.
Wrona S., Pawełczyk M. (2019), Feedforward control of double-panel casing for active reduction of device noise, Journal of Low Frequency Noise, Vibration and Active Control, 38(2): 787–797, doi: 10.1177/1461348418811429.
Zhang X., Qu Z.,Wang H. (2020), Engineering acoustic metamaterials for sound absorption: From uniform to gradient structures, iScience, 23(5): 101110, doi: 10.1016/j.isci.2020.101110.
Zielinski T.G. et al. (2020), Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study, Additive Manufacturing, 36: 101564, doi: 10.1016/j.addma.2020.101564.
DOI: 10.24425/aoa.2023.146814