Abstract
The Franssen illusion, or Franssen effect (FE), is one of the auditory spatial illusions. Few studies have explored the FE, and the mechanisms underlying it remain unknown. The present study was conducted to clarify the FE occurrence with different tasks and presentation modes in young adults. It also sought to investigate possible neurophysiological similarities between interaural time difference (ITD) cue processing and FE perception. FE perception was evaluated using two different tasks and two presentation modes (i.e., insert phones and loudspeakers). Sound reflections (reverberation) were presented in the diffuse field (loudspeaker mode). ITD performance was investigated using different stimuli delivered via insert phones. No significant difference between the two FE perception tasks was found (F1;25 = 0:138, p = 0:713). However, the FE perception showed a significant difference between the two presentation modes (F1;25 = 434:03, p < 0:001). Spearman’s correlation did not reveal a significant relationship between FE perception and ITD scores (p > 0:05). The current findings show the importance of reverberation in the FE occurrence. Also, the non-significant correlation between the results of the behavioral binaural temporal resolution test and FE perception in young people with normal temporal resolution may indicate that room reflections (reverberation) complicate the ability to process ITDs (rather than poor ITD processing for the “steady state” portion of signal).Keywords:
auditory spatial illusions, the Franssen effect, interaural time difference, binaural temporal resolutionReferences
1. Babkoff H., Muchnik C., Ben-David N., Furst M., Even-Zohar S., Hildesheimer M. (2002), Mapping lateralization of click trains in younger and older populations, Hearing research, 165(1–2): 117–127, https://doi.org/10.1016/S0378-5955%2802%2900292-7
2. Brown A.D., Stecker G.C., Tollin D.J. (2015), The precedence effect in sound localization, Journal of the Association for Research in Otolaryngology, 16(1): 1–28, https://doi.org/10.1007/s10162-014-0496-2
3. Brughera A., Dunai L., Hartmann W.M. (2013), Human interaural time difference thresholds for sine tones: The high-frequency limit, The Journal of the Acoustical Society of America, 133(5): 2839–2855, https://doi.org/10.1121/1.4795778
4. Delphi M., Lotfi M.-Y., Moossavi A., Bakhshi E., Banimostafa M. (2017), Reliability of interaural time difference-based localization training in elderly individuals with speech-in-noise perception disorder, Iranian Journal of Medical Sciences, 42(5): 437–442.
5. Donovan J.M., Nelson B.S., Takahashi T.T. (2012), The contributions of onset and offset echo delays to auditory spatial perception in human listeners, The Journal of the Acoustical Society of America, 132(6): 3912–3924, https://doi.org/10.1121/1.4764877
6. Franssen N.V. (1960), Some considerations on the mechanism of directional hearing, Ph.D. Thessis.
7. Gelfand S.A. (2016), Essentials of Audiology, 4th ed., Thieme, New York.
8. Grothe B., Pecka M., McAlpine D. (2010), Mechanisms of sound localization in mammals, Physiological Reviews, 90(3): 983–1012, https://doi.org/10.1152/physrev.00026.2009
9. Hafter E.R., Dye R.H., Gilkey R.H. (1979), Lateralization of tonal signals which have neither onsets nor offsets, The Journal of the Acoustical Society of America, 65(2): 471–477, https://doi.org/10.1121/1.382346
10. Haqqee Z., Valdizón-Rodríguez R., Faure P.A. (2021), High frequency sensitivity to interaural onset time differences in the bat inferior colliculus, Hearing Research, 400: 108133, https://doi.org/10.1016/j.heares.2020.108133
11. Hartmann W.M., Rakerd B. (1989), Localization of sound in rooms IV: The Franssen effect, The Journal of the Acoustical Society of America, 86(4): 1366–1373, https://doi.org/10.1121/1.398696
12. Higgins N.C., McLaughlin S.A., Da Costa S., Stecker G.C. (2017), Sensitivity to an illusion of sound location in human auditory cortex, Frontiers in Systems Neuroscience, 11, https://doi.org/10.3389/fnsys.2017.00035
13. Litovsky R.Y., Godar S.P. (2010), Difference in precedence effect between children and adults signifies development of sound localization abilities in complex listening tasks, The Journal of the Acoustical Society of America, 128(4): 1979–1991, https://doi.org/10.1121/1.3478849
14. O’Regan J.K., Rensink R.A., Clark J.J. (1999), Change-blindness as a result of ‘mudsplashes’, Nature, 398: 34, https://doi.org/10.1038/17953
15. Pierce A.H. (1901), Studies in Auditory and Visual Space Perception, Longmans, Green, and Company.
16. Pisoni D.B. (1977), Identification and discrimination of the relative onset time of two component tones: implications for voicing perception in stops, The Journal of the Acoustical Society of America, 61(5): 1352–1361, https://doi.org/10.1121/1.381409
17. Rajala A.Z., Yan Y., Dent M.L., Populin L.C. (2013), The inferior colliculus encodes the Franssen auditory spatial illusion, European Journal of Neuroscience, 38(7): 3056–3070, https://doi.org/10.1111/ejn.12325
18. Saberi K. (1996), Observer weighting of interaural delays in filtered impulses, Perception & Psychophysics, 58(7): 1037–1046, https://doi.org/10.3758/BF03206831
19. Scharf B., Florentine M., Meiselman C. (1976), Critical band in auditory lateralization, Sensory Processes, 1(2): 109–126.
20. Schroeger A., Raab M., Cañal-Bruland R. (2022), Tau and kappa in interception – how perceptual spatiotemporal interrelations affect movements, Attention, Perception, & Psychophysics, 84: 1925–1943, https://doi.org/10.3758/s13414-022-02516-0
21. Seeber B.U., Hafter E.R. (2011), Failure of the precedence effect with a noise-band vocoder, The Journal of the Acoustical Society of America, 129(3): 1509–1521, https://doi.org/10.1121/1.3531836
22. Soeta Y., Nakagawa S. (2007), Effects of the binaural auditory filter in the human brain, NeuroReport, 18(18): 1939–1943, https://doi.org/10.1097/WNR.0b013e3282f1d4fc
23. Stevens S.S., Newman E.B. (1936), The localization of actual sources of sound, The American Journal of Psychology, 48(2): 297–306, https://doi.org/10.2307/1415748
24. Suneel D., Staisloff H., Shayman C.S., Stelmach J., Aronoff J.M. (2017), Localization performance correlates with binaural fusion for interaurally mismatched vocoded speech, The Journal of the Acoustical Society of America, 142(3): 276–280, https://doi.org/10.1121/1.5001903
25. Van Deun L. et al. (2009), Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing, Ear and Hearing, 30(2): 178–190, https://doi.org/10.1097/AUD.0b013e318194256b
26. Verschooten E. et al. (2019), The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints, Hearing research, 377: 109–121, https://doi.org/10.1016/j.heares.2019.03.011
27. Wallach H., Newman E.B., Rosenzweig M.R. (1949), The precedence effect in sound localization, The American Journal of Psychology, 62(3): 315–336, https://doi.org/10.1121/1.1917119
28. Yagcioglu S., Ungan P. (2006), The ‘Franssen’ illusion for short duration tones is preattentive: A study using mismatch negativity, Brain Research, 1106(1): 164–176, https://doi.org/10.1016/j.brainres.2006.05.075
29. Yost W.A. (2017), Sound source localization identification accuracy: Envelope dependencies, The Journal of the Acoustical Society of America, 142(1): 173–185, https://doi.org/10.1121/1.4990656
30. Yost W.A., Mapes-Riordan D., Guzman S.J. (1997), The relationship between localization and the Franssen effect, The Journal of the Acoustical Society of America, 101(5): 2994–2997, https://doi.org/10.1121/1.418528
31. Yost W.A., Zhong X. (2014), Sound source localization identification accuracy: Bandwidth dependencies, The Journal of the Acoustical Society of America, 136(5): 2737–2746, https://doi.org/10.1121/1.4898045
2. Brown A.D., Stecker G.C., Tollin D.J. (2015), The precedence effect in sound localization, Journal of the Association for Research in Otolaryngology, 16(1): 1–28, https://doi.org/10.1007/s10162-014-0496-2
3. Brughera A., Dunai L., Hartmann W.M. (2013), Human interaural time difference thresholds for sine tones: The high-frequency limit, The Journal of the Acoustical Society of America, 133(5): 2839–2855, https://doi.org/10.1121/1.4795778
4. Delphi M., Lotfi M.-Y., Moossavi A., Bakhshi E., Banimostafa M. (2017), Reliability of interaural time difference-based localization training in elderly individuals with speech-in-noise perception disorder, Iranian Journal of Medical Sciences, 42(5): 437–442.
5. Donovan J.M., Nelson B.S., Takahashi T.T. (2012), The contributions of onset and offset echo delays to auditory spatial perception in human listeners, The Journal of the Acoustical Society of America, 132(6): 3912–3924, https://doi.org/10.1121/1.4764877
6. Franssen N.V. (1960), Some considerations on the mechanism of directional hearing, Ph.D. Thessis.
7. Gelfand S.A. (2016), Essentials of Audiology, 4th ed., Thieme, New York.
8. Grothe B., Pecka M., McAlpine D. (2010), Mechanisms of sound localization in mammals, Physiological Reviews, 90(3): 983–1012, https://doi.org/10.1152/physrev.00026.2009
9. Hafter E.R., Dye R.H., Gilkey R.H. (1979), Lateralization of tonal signals which have neither onsets nor offsets, The Journal of the Acoustical Society of America, 65(2): 471–477, https://doi.org/10.1121/1.382346
10. Haqqee Z., Valdizón-Rodríguez R., Faure P.A. (2021), High frequency sensitivity to interaural onset time differences in the bat inferior colliculus, Hearing Research, 400: 108133, https://doi.org/10.1016/j.heares.2020.108133
11. Hartmann W.M., Rakerd B. (1989), Localization of sound in rooms IV: The Franssen effect, The Journal of the Acoustical Society of America, 86(4): 1366–1373, https://doi.org/10.1121/1.398696
12. Higgins N.C., McLaughlin S.A., Da Costa S., Stecker G.C. (2017), Sensitivity to an illusion of sound location in human auditory cortex, Frontiers in Systems Neuroscience, 11, https://doi.org/10.3389/fnsys.2017.00035
13. Litovsky R.Y., Godar S.P. (2010), Difference in precedence effect between children and adults signifies development of sound localization abilities in complex listening tasks, The Journal of the Acoustical Society of America, 128(4): 1979–1991, https://doi.org/10.1121/1.3478849
14. O’Regan J.K., Rensink R.A., Clark J.J. (1999), Change-blindness as a result of ‘mudsplashes’, Nature, 398: 34, https://doi.org/10.1038/17953
15. Pierce A.H. (1901), Studies in Auditory and Visual Space Perception, Longmans, Green, and Company.
16. Pisoni D.B. (1977), Identification and discrimination of the relative onset time of two component tones: implications for voicing perception in stops, The Journal of the Acoustical Society of America, 61(5): 1352–1361, https://doi.org/10.1121/1.381409
17. Rajala A.Z., Yan Y., Dent M.L., Populin L.C. (2013), The inferior colliculus encodes the Franssen auditory spatial illusion, European Journal of Neuroscience, 38(7): 3056–3070, https://doi.org/10.1111/ejn.12325
18. Saberi K. (1996), Observer weighting of interaural delays in filtered impulses, Perception & Psychophysics, 58(7): 1037–1046, https://doi.org/10.3758/BF03206831
19. Scharf B., Florentine M., Meiselman C. (1976), Critical band in auditory lateralization, Sensory Processes, 1(2): 109–126.
20. Schroeger A., Raab M., Cañal-Bruland R. (2022), Tau and kappa in interception – how perceptual spatiotemporal interrelations affect movements, Attention, Perception, & Psychophysics, 84: 1925–1943, https://doi.org/10.3758/s13414-022-02516-0
21. Seeber B.U., Hafter E.R. (2011), Failure of the precedence effect with a noise-band vocoder, The Journal of the Acoustical Society of America, 129(3): 1509–1521, https://doi.org/10.1121/1.3531836
22. Soeta Y., Nakagawa S. (2007), Effects of the binaural auditory filter in the human brain, NeuroReport, 18(18): 1939–1943, https://doi.org/10.1097/WNR.0b013e3282f1d4fc
23. Stevens S.S., Newman E.B. (1936), The localization of actual sources of sound, The American Journal of Psychology, 48(2): 297–306, https://doi.org/10.2307/1415748
24. Suneel D., Staisloff H., Shayman C.S., Stelmach J., Aronoff J.M. (2017), Localization performance correlates with binaural fusion for interaurally mismatched vocoded speech, The Journal of the Acoustical Society of America, 142(3): 276–280, https://doi.org/10.1121/1.5001903
25. Van Deun L. et al. (2009), Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing, Ear and Hearing, 30(2): 178–190, https://doi.org/10.1097/AUD.0b013e318194256b
26. Verschooten E. et al. (2019), The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints, Hearing research, 377: 109–121, https://doi.org/10.1016/j.heares.2019.03.011
27. Wallach H., Newman E.B., Rosenzweig M.R. (1949), The precedence effect in sound localization, The American Journal of Psychology, 62(3): 315–336, https://doi.org/10.1121/1.1917119
28. Yagcioglu S., Ungan P. (2006), The ‘Franssen’ illusion for short duration tones is preattentive: A study using mismatch negativity, Brain Research, 1106(1): 164–176, https://doi.org/10.1016/j.brainres.2006.05.075
29. Yost W.A. (2017), Sound source localization identification accuracy: Envelope dependencies, The Journal of the Acoustical Society of America, 142(1): 173–185, https://doi.org/10.1121/1.4990656
30. Yost W.A., Mapes-Riordan D., Guzman S.J. (1997), The relationship between localization and the Franssen effect, The Journal of the Acoustical Society of America, 101(5): 2994–2997, https://doi.org/10.1121/1.418528
31. Yost W.A., Zhong X. (2014), Sound source localization identification accuracy: Bandwidth dependencies, The Journal of the Acoustical Society of America, 136(5): 2737–2746, https://doi.org/10.1121/1.4898045

