10.24425/aoa.2024.148796
Drone Flight Detection at an Entrance to a Beehive Based on Audio Signals
References
Blackman R.B., Tukey J.W. (1958), The measurement of power spectra from the point of view of communications engineering – Part I, Bell System Technical Journal, 37(1): 185–282, doi: 10.1002/j.1538-7305.1958.tb03874.x.
Cejrowski T., Szymanski J., Logofatu D. (2020), Buzz-based recognition of the honeybee colony circadian rhythm, Computers and Electronics in Agriculture, 175: 105586, doi: 10.1016/j.compag.2020.105586.
Cooley J.W. (1997), The re-discovery of the fast Fourier transform algorithm, Microchimica Acta, 3: 33–45, doi: 10.1007/BF01201681.
Davis S., Mermelstein P. (1980), Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, [in:] IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4): 357–366, doi: 10.1109/TASSP.1980.1163420.
Gourisaria M.K., Agrawal R., Sahni M., Singh P.K. (2024), Comparative analysis of audio classification with MFCC and STFT features using machine learning techniques, Discover Internet of Things, 4: 1, doi: 10.1007/s43926-023-00049-y.
Gradišek A., Slapnicar G., Sorn J., Luštrek M., Gams M., Grad J. (2017), Predicting species identity of bumblebees through analysis of flight buzzing sounds, Bioacoustics, 26(1): 63–76, doi: 10.1080/09524622.2016.1190946.
Hadjur H., Ammar D., Lefèvre L. (2022), Toward an intelligent and efficient beehive: A survey of precision beekeeping systems and services, Computers and Electronics in Agriculture, 192: 106604, doi: 10.1016/j.compag.2021.106604.
Hinton G.E., Salakhutdinov R.R. (2006), Reducing the dimensionality of data with neural networks, Science, 313(5786): 504–507, doi: 10.1126/science.1127647.
Kawakita S., Ichikawa K. (2019), Automated classification of bees and hornet using acoustic analysis of their flight sounds, Apidologie, 50: 71–79, doi: 10.1007/s13592-018-0619-6.
Kay S.M. (1988), Modern Spectral Estimation: Theory and Application, Englewood Cliffs, Prentice Hall.
Kim J., Oh J., Heo T.-Y. (2021), Acoustic scene classification and visualization of beehive sounds using machine learning algorithms and Grad-CAM, Mathematical Problems in Engineering 2021: 5594498, doi: 10.1155/2021/5594498.
Kulyukin V., Mukherjee S., Amlathe P. (2018), Toward audio beehive monitoring: Deep learning vs. standard machine learning in classifying beehive audio samples, Applied Sciences, 8(9): 1573, doi: 10.3390/app8091573.
Libal U., Biernacki P. (2024), MFCC selection by LASSO for honey bee classification, Applied Sciences, 14(2): 913, doi: 10.3390/app14020913.
Nolasco I., Terenzi A., Cecchi S., Orcioni S., Bear H.L., Benetos E. (2018), Audio-based identification of beehive states, [in:] ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8256–8260, doi: 10.1109/ICASSP.2019.8682981.
Orfanidis S.J. (1995), Introduction to Signal Processing, Prentice-Hall.
Ostrowska W. (1980), Beekeeping [in Polish: Gospodarka Pasieczna], Panstwowe Wydawnictwo Rolnicze i Lesne, Warszawa.
Peng R., Ardekani I., Sharifzadeh H. (2020), An acoustic signal processing system for identification of queen-less beehives, [in:] Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 57–63.
Ribeiro A.P., da Silva N.F.F., Mesquita F.N., Araújo P.D.C.S., Rosa T.C., Mesquita-Neto J.N. (2021), Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds, PLOS Computational Biology, 17(9): e1009426, doi: 10.1371/journal.pcbi.1009426.
Ruvinga S., Hunter G.J., Duran O., Nebel J. (2021), Use of LSTM networks to identify “queenlessness” in honeybee hives from audio signals, [in:] 2021 17th International Conference on Intelligent Environments (IE), pp. 1–4, doi: 10.1109/IE51775.2021.9486575.
Sarma M.S., Fuchs S., Werber C., Tautz J. (2002), Worker piping triggers hissing for coordinated colony defence in the dwarf honeybee Apis florea, Zoology, 105(3): 215–223, doi: 10.1078/0944-2006-00064.
Seeley T.D., Tautz J. (2001), Worker piping in honey bee swarms and its role in preparing for liftoff, Journal of Comparative Physiology A, 187: 667–676, doi: 10.1007/s00359-001-0243-0.
Soares B.S., Luz J.S., de Macêdo V.F., Silva R.R.V., de Araújo F.H.D., Magalhães D.M.V. (2022), MFCC-based descriptor for bee queen presence detection, Expert Systems with Applications, 201: 117104, doi: 10.1016/j.eswa.2022.117104.
Wright W.D. (1913), The Honey Bee, Albany, J.B. Lyon Company.
Yegnanarayana B., Prasanna S.M., Zachariah J.M., Gupta C.S. (2005), Combining evidence from source, suprasegmental and spectral features for a fixed-text speaker verification system, IEEE Transactions on Speech and Audio Processing, 13(4): 575–582, doi: 10.1109/TSA.2005.848892.
Zgank A. (2021), IoT-based bee swarm activity acoustic classification using deep neural networks, Sensors, 21(3): 676, doi: 10.3390/s21030676.
Zlatkova A., Gerazov B., Tashkovski D., Kokolanski Z. (2020), Analysis of parameters in algorithms for signal processing for swarming of honeybees, [in:] 2020 28th Telecommunications Forum (TELFOR), pp. 1–4, doi: 10.1109/TELFOR51502.2020.9306562.
DOI: 10.24425/aoa.2024.148796