10.24425/aoa.2024.148805
Fine-Grained Recognition of Fidgety-Type Emotions Using Multi-Scale One-Dimensional Residual Siamese Network
References
Abdeljaber O., Avci O., Kiranyaz S., Gabbouj M., Inman D.J. (2017), Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, Journal of Sound and Vibration, 388: 154–170, doi: 10.1016/j.jsv.2016.10.043.
Atila O., Sengür A. (2021), Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition, Applied Acoustics, 182: 108260, doi: 10.1016/j.apacoust.2021.108260.
Atsavasirilert K. et al. (2019), A light-weight deep convolutional neural network for speech emotion recognition using mel-spectrograms, [in:] Proceedings of 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (ISAI -NLP), pp. 1–4, doi: 10.1109/isai-nlp48611.2019.9045511.
Avci O., Abdeljaber O., Kiranyaz S., Hussein M., Inman D.J. (2018), Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks, Journal of Sound and Vibration, 424: 158–172, doi: 10.1016/j.jsv.2018.03.008.
Avci O., Abdeljaber O., Kiranyaz S., Inman D.J. (2019), Convolutional neural networks for real-time
and wireless damage detection, Dynamics of Civil Structures, 2: 129–136, doi: 10.1007/978-3-030-12115-0_17.
Chen Q., Huang G. (2021), A novel dual attention-based BLSTM with hybrid features in speech emotion recognition, Engineering Applications of Artificial Intelligence, 102: 104277, doi: 10.1016/j.engappai.2021.104277.
Dupuis K., Pichora-Fuller M.K. (2014), Recognition of emotional speech for younger and older talkers, Ear & Hearing, 35(6): 695–707, doi: 10.1097/aud.0000000000000082.
Huang C., Chen G., Yu H., Bao Y., Zhao L. (2013a), Speech emotion recognition under white noise,
Archives of Acoustics, 38(4): 457–463, doi: 10.2478/aoa-2013-0054.
Huang C., Jin Y., Zhao Y., Yu Y., Zhao L. (2009a), Speech emotion recognition based on re-composition of two-class classifiers, [in:] Proceedings of 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1–3, doi: 10.1109/acii.2009.5349420.
Huang C., Jin Y., Zhao Y., Yu Y., Zhao L. (2009b), Recognition of practical emotion from elicited speech, [in:] Proceedings of the First International Conference on Information Science and Engineering, pp. 1–4, doi: 10.1109/icise.2009.875.
Huang C., Liang R., Wang Q., Xi J., Zha C., Zhao L. (2013b), Practical speech emotion recognition based on online learning: From acted data to elicited data, Mathematical Problems in Engineering, 2013: 265819, doi: 10.1155/2013/265819.
Huang C., Song B., Zhao L. (2016), Emotional speech feature normalization and recognition based on speaker-sensitive feature clustering, International Journal of Speech Technology, 19(4): 805–816, doi: 10.1007/s10772-016-9371-3.
Huang C., Zhao Y., Jin Y., Yu Y., Zhao L. (2011), A study on feature analysis and recognition of practical speech emotion, Journal of Electronics & Information Technology, 33(1): 112–116, doi: 10.3724/sp.j.1146.2009.00886.
Jin Y., Huang C., Zhao L. (2011), A semi-supervised learning algorithm based on modified self-training SVM, Journal of Computers, 6(7): 1438–1443, doi: 10.4304/jcp.6.7.1438-1443.
Jin Y., Song P., Zheng W., Zhao L. (2014), A feature selection and feature fusion combination method for speaker-independent speech emotion recognition, [in:] Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4808–4812, doi: 10.1109/icassp.2014.6854515.
Jin Y., Zhao Y., Huang C., Zhao L. (2009), Study on the emotion recognition of whispered speech, [in:] Proceedings of 2009 WRI Global Congress on Intelligent Systems, pp. 242–246, doi: 10.1109/gcis.2009.175.
Kiranyaz S., Gastli A., Ben-Brahim L., Al-Emadi N., Gabbouj M. (2019), Real-time fault detection and identification for MMC using 1-D convolutional neural networks, IEEE Transactions on Industrial Electronics, 66(11): 8760–8771, doi: 10.1109/tie.2018.2833045.
Latif S., Shahid A., Qadir J. (2023), Generative emotional AI for speech emotion recognition: The case for synthetic emotional speech augmentation, Applied Acoustics, 210: 109425, doi: 10.1016/j.apacoust.2023.109425.
Lieskovská E., Jakubec M., Jarina R., Chmulík M. (2021), A review on speech emotion recognition using deep learning and attention mechanism, Electronics, 10(10): 1163, doi: 10.3390/electronics10101163.
Praseetha V.M., Vadivel S. (2018), Deep learning models for speech emotion recognition, Journal of Computer Science, 14(11): 1577–1587, doi: 10.3844/jcssp.2018.1577.1587.
Wang Z.Q., Tashev I. (2017), Learning utterance-level representations for speech emotion and age/gender recognition using deep neural networks, [in:] Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5150–5154, doi: 10.1109/icassp.2017.7953138.
Wu C., Huang C., Chen H. (2018), Text-independent speech emotion recognition using frequency adaptive features, Multimedia Tools and Applications, 77(18): 24353–24363, doi: 10.1007/s11042-018-5742-x.
Xiong Z., Stiles M., Zhao J. (2017), Robust ECG signal classification for the detection of atrial fibrillation using novel neural networks, [in:] Proceedings of 2017 Computing in Cardiology Conference (CinC), 44, doi: 10.22489/cinc.2017.066-138.
Xu X., Huang C., Wu C., Wang Q., Zhao L. (2014), Graph learning based speaker independent speech emotion recognition, Advances in Electrical and Computer Engineering, 14(2): 17–22, doi: 10.4316/aece.2014.02003.
Yan J., Wang X., Gu W., Ma L. (2013), Speech emotion recognition based on sparse representation, Archives of Acoustics, 38(4): 465–470, doi: 10.2478/aoa-2013-0055.
Zhou Q. et al. (2021), Cough recognition based on Mel-spectrogram and convolutional neural network, Frontiers in Robotics and AI, 8: 1–7, doi: 10.3389/frobt.2021.580080.
Zou C., Huang C., Han D., Zhao L. (2011), Detecting practical speech emotion in a cognitive task, [in:] Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), pp. 1–5, doi: 10.1109/icccn.2011.6005883.
DOI: 10.24425/aoa.2024.148805