10.2478/aoa-2014-0061
Circular Radon Transform Inversion Technique in Synthetic Aperture Ultrasound Imaging: an Ultrasound Phantom Evaluation
References
Agranovsky M.L., Quinto E.T. (1996), Injectivity sets for the Radon transform over circles and
complete systems of radial functions, J. Funct. Anal., 139, 383–413.
Cafforio C., Prati C., Rocca F. (1991), SAR data focusing using seismic migration techniques,
IEEE Trans. Aerosp. Electron. Syst., 27, 194–207.
Cooley C., Robinson B. (1994), Synthetic focus imaging using partial datasets, Proc. 1994 IEEE
Ultrason. Symp., vol. 3, 1539–1542.
Corl P.D., Grant P.M., Kino G. (1978), A Digital Synthetic Focus Acoustic Imaging System for
NDE, Proc. 1978 IEEE Ultrason. Symp., 263–268.
Cormack A.M. (1963), Representation of a function by its line integrals, with some radiological
applications, J. Appl. Phys., 34, 9, 2722–2727.
Cormack A.M. (1964), Representation of a function by its line integrals, with some radiological
applications. II, J. Appl. Phys., 35, 10, 2908–2913.
Danicki E., Tasinkevych Y. (2012), Acoustical Imaging, vol. 31, Chap. Beam-forming electrostric-
tive matrix, Springer, 363–369.
Ehrenpreis L. (2003), The Universality of the Radon Transform, Chap. 1.7, Clarendon Press
Oxford, 87.
Gel’fand I.M., Shilov G.E. (1964), Generalized Functions, Chap. III, New York: Academic Press,
Karaman M., Li P.C., O’Donnell M. (1995), Synthetic aperture imaging for small scale systems,
IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 42, 3, 429–442.
Lebedev N.N. (1957a), Special Functions and Their application (in Polish), Chap. V, PWN
Warsaw, 126.
Lebedev N.N. (1957b), Special Functions and Their application (in Polish), Chap. V, PWN
Warsaw, 130.
Lockwood G.R., Talman J.R., Brunke S.S. (1998), Real-time 3-D ultrasound imaging using
sparse synthetic aperture beamforming, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 45,
, 980–988.
Milman A.S. (1993), SAR imaging by ω −k migration, Int. J. Remote Sens., 14, 10, 1965–1979.
Moon S. (2014), On the determination of a function from an elliptical Radon transform, Journal
of Mathematical Analysis and Applications, 416, 2, 724–734.
Moreira A. (1992), Real-time synthetic aperture radar (SAR) processing with a new subaperture
approach, IEEE Trans. Geosci. Remote Sens., 30, 4, 714–722.
Nagai K. (1985), A New Synthetic-Aperture Focusing Method for Ultrasonic B-Scan Imaging by
the Fourier Transform, IEEE Trans. Sonics Ultrason., 32, 4, 531–536.
Nikolov S., Gammelmark K., Jensen J. (1999), Recursive ultrasound imaging, Proc. 1999 IEEE
Ultrason. Symp., vol. 2, 1621–1625.
Norton S.J. (1980), Reconstruction of a reflectivity field from line integrals over circular paths,
J. Acoust. Soc. Am., 67, 3, 853–863.
O’Donnell M., Thomas L.J. (1992), Efficient synthetic aperture imaging from a circular aperture
with possible application to catheter-based imaging, IEEE Trans. Ultrason., Ferroelectr. Freq.
Contr., 36, 3, 366–380.
Opieli´nski K.J., Gudra T. (2001), Industrial and Biological Tomography - Theoretical Basis and
Applications, Chap. Ultrasonic transmission tomography, Electrotechnical Institute, Warsaw,
–276.
Ozaki Y., Sumitani H., Tomoda T., Tanaka M. (1988), A new system for real-time synthetic
aperture ultrasonic imaging, IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 35, 6, 828–838.
Perry R.M., Martinson L.W. (1978), Radar Technology, Chap. Radar matched filtering, Artech
House, Boston, 163–169.
Phantom (525), URL http://www.fantom.dk/525.htm.
Redding N.J., Newsam G.N. (2001), Inverting the Circular Radon Transform, DTSO Research
Raport DTSO-RR-0211.
Selfridge A.R., Kino G.S., Khuriyakub B.T. (1980), A theory for the radiation pattern of a
narrow-strip acoustic transducer, Appl. Phys. Lett., 37, 1, 35–36.
Stergiopoulos S., Sullivan E.J. (1989), Extended towed array processing by an overlap correlator,
J. Acoust. Soc. Am., 86, 1, 158–171.
Stolt R.H. (1978), Migration by Fourier transform, Geophysics, 43, 23–48.
Tasinkevych Y. (2010), Wave generation by a finite baffle array in applications to beam-forming
analysis, Archives of Acoustics, 35, 4, 677–686.
Tasinkevych Y., Danicki E.J. (2011), Wave generation and scattering by periodic baffle system
in application to beam-forming analysis, Wave Motion, 48, 2, 130–145.
Tasinkevych Y., Klimonda Z., Lewandowski M., Nowicki A., Lewin P.A. (2013), Modified multi-
element synthetic transmit aperture method for ultrasound imaging: A tissue phantom study,
Ultrasonics, 53, 570–579.
Tasinkevych Y., Trots I., Nowicki A., Lewin P.A. (2012), Modified synthetic transmit aperture
algorithm for ultrasound imaging, Ultrasonics, 52, 2, 333–342.
Thomson R.N. (1984), Transverse and longitudinal resolution of the synthetic aperture focusing
technique, Ultrasonics, 22, 1, 9–15.
Trots I., Nowicki A., Lewandowski M., Tasinkevych Y. (2010), Multi-element synthetic transmit
aperture in medical ultrasound imaging, Arch. Acoust., 35, 4, 687–699.
Yen N.C., Carey W. (1989), Application of synthetic aperture processing to towed-array data, J.
Acoust. Soc. Am., 86, 2, 754–765.
DOI: 10.2478/aoa-2014-0061