Archives of Acoustics, 39, 4, pp. 599-603, 2014
10.2478/aoa-2014-0064

Comparison of Formulas Obtained for Analytical and LQ Idea Approaches to Determine the Optimal Actuator Location in Active Multimodal Beam Vibration Reduction

Elżbieta ŻOŁOPA

Adam BRAŃSKI
Rzeszów University of Technology
Poland

In this paper an active general beam vibration reduction via one actuator is considered. The optimal actuator distribution is analyzed with two methods: an exact mathematical principles and the LQ problem idea. It turned out, that the same mathematical expressions are derived. So these methods are equivalent.
Keywords: beam, actuator, active vibration reduction, LQ problem, system control, control of vibration.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Brański A., Borkowski M., Szela S. (2010), The idea of the selection of PZT-beam interaction forces in active vibration protection problem, Acta Physica Polonica, 118, 17¬22.

Brański A. (2011), An optimal distribution of actuators in active beam vibration - some aspects, theoretical considerations, Acoustic Waves, Chapter 18, InTech, Rijeka, Chorwacja, 397¬418.

Brański A., Lipiński G. (2011), Analytical determination of the PZT’s distribution in active beam vibration protection problem, Acta Physica Polonica 119, 936¬941.

Brański A. (2013), Effectiveness analysis of the beam modes active vibration protection with different number of actuators, Acta Physica Polonica, 123, 11231127.

Bruant I., Proslier L. (2005), Optimal location of actuators and sensors in active vibration control, J. Intelligent Material System Structures, 16, 197–206.

Bruant I., Gallimard L., Nikoukar S. (2010), Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm, J.S.V., 329, 16151635.

Fuller C.R., Elliot S.J., Nielsen P.A. (1997), Active control of vibration, Academic Press, London.

Guney M., Eskinat E. (2007), Optimal actuator and sensor placement in flexible structures using closed-loop criteria, J.S.V., 312, 210233.

Gupta V., Sharma M., Thakur N. (2010), Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on Smart Structure: A Technical Review, Journal of Intelligent Material Systems and Structures, 21.

Hansen C.H., Snyder S.D. (1997), Active control of noise and vibration, E&FN SPON, London.

Kaliski S. (1986), Vibrations and waves, PWN, Warszawa, (in polish).

Kozień M.S. (2013), Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution, Acta Physica Polonica, 123, 10291033.

Qiu Z., Zhang X., Wu H., Zhang H. (2007), Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate, J.S.V., 301, 521543.

de Silva C.W. (2000), Vibration, Fundamentals and practice, CRC Press.

Wiciak J. (2008), Wybrane zagadnienia redukcji drgań i dźwięków strukturalnych, AGH, Kraków.

Żołopa E., Brański A. (2014a), Analytical Determination of Optimal Actuators Position for Single Mode Active Reduction of Fixed-free Beam Vibration Using the LQ Problem Idea, Acta Physica Polonica, 125, 155¬158.

Żołopa E., Brański A. (2014b), An active reduction of general beam vibration via actuator, E-book Forum Acusticum, SS22_11, http://www.fa2014.agh.edu.pl/fa2014_cd/.




DOI: 10.2478/aoa-2014-0064