10.24425/aoa.2022.140727
Acoustic Metamaterials
References
Akl W., Baz A. (2012), Experimental characterization of active acoustic metamaterial cell with controllable dynamic density, Journal of Applied Physics, 112(8): 084912, doi: 10.1063/1.4759327.
Akl W., Baz A. (2021), Active control of the dynamic density of acoustic metamaterials, Applied Acoustics, 178: 108001, doi: 10.1016/j.apacoust.2021.108001.
Allam A., Elsabbagh A., Akl W. (2017), Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density, Journal of Applied Physics, 121(12): 125106, doi: 10.1063/1.4979020.
Born M., Wolf E. (1980), Elements of the theory of diffraction, [in:] Principles of Optics (Sixth Edition), Pergamon, pp. 370–458, doi: 10.1016/B978-0-08-026482-0.50015-3.
Carcione J.M., Cavallini F. (1995), On the acousticelectromagnetic analogy, Wave Motion, 21(2): 149–162, doi: 10.1016/0165-2125(94)00047-9.
Carcione J.M., Robinson E. (2002), On the acousticelectromagnetic analogy for the reflection-refraction problem, Studia Geophysica et Geodaetica, 46(2): 321–346, doi: 10.1023/A:1019862321912.
Chen Z. et al. (2016), A tunable acoustic metamaterial with double-negativity driven by electromagnets, Scientific Reports, 6(1): 30254, doi: 10.1038/srep30254.
Csernyava O. (2021), Anisotropic Cloak FDTD (version 1.3). MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/73120-anisotropic-cloak-fdtd.
Cummer S.A., Christensen J., Alù A. (2016), Controlling sound with acoustic metamaterials, Nature Reviews Materials, 1(3): 16001, doi: 10.1038/natrevmats.2016.1.
Cummer S.A., Schurig D. (2007), One path to acoustic cloaking, New Journal of Physics, 9(3): 45–45, doi: 10.1088/1367-2630/9/3/045.
Dong H.W., Zhao S.D., Wei P., Cheng L., Wang Y.S., Zhang C. (2019), Systematic design and realization of double-negative acoustic metamaterials by topology optimization, Acta Materialia, 172: 102–120, doi: 10.1016/j.actamat.2019.04.042.
Enoch J.M. (1999), Remarkable lenses and eye units in statues from the Egyptian Old Kingdom (ca. 4500 years ago): properties, timeline, questions requiring resolution, [in:] 18th Congress of the International Commission for Optics: Vol. Proc. SPIE, A.J. Glass, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura [Eds], pp. 224–225, doi: 10.1117/12.354722.
Esfahlani H., Karkar S., Lissek H. (2016), Acoustic carpet cloak based on an ultrathin metasurface, Physical Review, 94(1): 014302, doi: 10.1103/PhysRevB.94.014302.
Fang N. et al. (2006), Ultrasonic metamaterials with negative modulus, Nature Materials, 5(6): 452–456, doi: 10.1038/nmat1644.
Fang N., Xu J., Nemati N., Viard N., Lafarge D. (2018), Acoustic metamaterial, [in:] World Scientific Handbook of Metamaterials and Plasmonics, Volume 2: Elastic, Acoustic, and Seismic Metamaterials, R. Craster, S. Guenneau [Eds],World Scientific Publishing Co. Pte. Ltd., 10.1142/10642-vol2.
Goelzer B., Hansen C.H., Sehrndt G.A. (2020), Occupational exposure to noise: evaluation, prevention and control, [in:] Document published on behalf of the World Health Organisation, Vol. 15, Issues 1–2, https://www.who.int/occupational_health/publications/occupnoise/en/, retrieved October 8, 2020.
Gruber D.P., Tew J.M. (1998), History of the operating microscope: from magnifying glass to microneurosurgery, Neurosurgery, 42(4): 907, doi: 10.1097/00006123-199804000-00118.
Langfeldt F., Riecken J., Gleine W., von Estorff O., (2016), A membrane-type acoustic metamaterial with adjustable acoustic properties, Journal of Sound and Vibration, 373: 1–18, doi: 10.1016/j.jsv.2016.03.025.
Lee K.J.B., Jung M.K., Lee S.H. (2012), Highly tunable acoustic metamaterials based on a resonant tubular array, Physical Review B, 86(18): 184302, doi: 10.1103/PhysRevB.86.184302.
Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K. (2009), Acoustic metamaterial with negative density, Physics Letters, Section A: General, Atomic and Solid State Physics, 373(48): 4464–4469, doi: 10.1016/j.physleta.2009.10.013.
Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K. (2010), Composite acoustic medium with simultaneously negative density and modulus, Physical Review Letters, 104(5): 1–4, doi: 10.1103/PhysRevLett.104.054301.
Leonhardt U. (2006), Optical conformal mapping, Science, 312(5781): 1777–1780, doi: 10.1126/science.1126493.
Li J., Chan C.T. (2004), Double-negative acoustic metamaterial, Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(5): 055602, doi: 10.1103/PhysRevE.70.055602.
Li P., Chen X., Zhou X., Hu G., Xiang P. (2015), Acoustic cloak constructed with thin-plate metamaterials, International Journal of Smart and Nano Materials, 6(1): 73–83, doi: 10.1080/19475411.2015.1005722.
Lin Q., Lin Q., Wang Y., Di G. (2021), Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial, Composite Structures, 273: 114312, doi: 10.1016/j.compstruct.2021.114312.
Liu Y. et al. (2020), Three-dimensional fractal structure with double negative and density-near-zero properties on a subwavelength scale, Materials and Design, 188: 108470, doi: 10.1016/j.matdes.2020.108470.
Liu Z. et al. (2000), Locally resonant sonic materials, Science, 289(5485): 1734–1736, doi: 10.1126/science.289.5485.1734.
Long H. et al. (2020), Subwavelength broadband sound absorber based on a composite metasurface, Scientific Reports, 10(1): 1–10, doi: 10.1038/s41598-020-70714-7.
Long M. (2014), Sound transmission loss, [in:] Architectural Acoustics, 2nd ed., pp. 345–382, Boston: Academic Press, doi: 10.1016/b978-0-12-398258-2.00009-x.
Mahesh N.R., Prita N. (2011), Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, Proceedings of 2011 COMSOL Conference, https://www.comsol.com/paper/experimental-and-theoretical-investigation-of-acoustic-metamaterial-with-negativ-11440.
Naify C.J., Ikei A., Rohde C.A. (2020), Locally programmable metamaterial elements using fourdimensional printing, Extreme Mechanics Letters, 36: 100654, doi: 10.1016/j.eml.2020.100654.
Nicolas L., Furstoss M., Galland M.A. (1998), Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption, EPJ Applied Physics, 4(1): 95–100, doi: 10.1051/epjap:1998247.
Ning S., Yan Z., Chu D., Jiang H., Liu Z., Zhuang Z. (2021), Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature, Extreme Mechanics Letters, 44: 101218, doi: 10.1016/j.eml.2021.101218.
Pendry J.B. (2000), Negative refraction makes a perfect lens, Physical Review Letters, 85(18): 3966–3969, doi: 10.1103/PhysRevLett.85.3966.
Pendry J.B., Schurig D., Smith D.R. (2006), Controlling electromagnetic fields, Science, 312(1780): 1780–1782, doi: 10.1126/science.1125907.
Peng Y.G., Shen Y.X., Geng Z.G., Li P.Q., Zhu J., Zhu X.F. (2020), Super-resolution acoustic image montage via a biaxial metamaterial lens, Science Bulletin, 65(12): 1022–1029, doi: 10.1016/j.scib.2020.03.018.
Popa B.I., Zigoneanu L., Cummer S.A. (2013), Tunable active acoustic metamaterials, Physical Review B – Condensed Matter and Materials Physics, 88(2): 1–8, doi: 10.1103/PhysRevB.88.024303.
Sang Hoon K., Mukunda D. (2012), Seismic waveguide of metamaterials, Modern Physics Letters B, 26(17): 1250105, doi: 10.1142/S0217984912501059.
Sarvazyan A.P., Urban M.W., Greenleaf J.F. (2013), Acoustic waves in medical imaging and diagnostics, Ultrasound in Medicine and Biology, 39(7): 1133–1146, doi: 10.1016/j.ultrasmedbio.2013.02.006.
Shao C., Long H., Cheng Y., Liu X. (2019), Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9(1): 1–8, doi: 10.1038/s41598-019-49982-5.
Shao H., He H., Chen Y., Tan X., Chen G. (2020), A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities, Applied Acoustics, 157: 107022, doi: 10.1016/j.apacoust.2019.107022.
Sirota L., Sabsovich D., Lahini Y., Ilan R., Shokef Y. (2021), Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial, Mechanical Systems and Signal Processing, 153: 107479, doi: 10.1016/j.ymssp.2020.107479.
Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. (2000), Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters, 84(18): 4184–4187, doi: 10.1103/PhysRevLett.84.4184.
Veselago V.G. (1968), The electrodynamic of substances with simultaneous negative values of ε and μ, Soviet Physics Uspekhi, 10(4): 509–514, doi: 10.1070/pu1968v010n04abeh003699.
Walser R.M. (2001), Electromagnetic metamaterials, [in:] Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W.S. Weiglhofer, I.J. Hodgkinson [Eds], Vol. 4467, SPIE, doi: 10.1117/12.432921.
Xiao S. et al. (2015), Active control of membrane-type acoustic metamaterial by electric field, Applied Physics Letters, 106(9): 091904, doi: 10.1063/1.4913999.
Yang M., Ma G., Yang Z., Sheng P. (2013), Coupled membranes with doubly negative mass density and bulk modulus, Physical Review Letters, 110(13): 134301, doi: 10.1103/PhysRevLett.110.134301.
Yang Z., Mei J., Yang M., Chan N.H., Sheng P. (2008), Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, 101(20): 1–4, doi: 10.1103/PhysRevLett.101.204301.
Zangeneh-Nejad F., Fleury R. (2019), Active times for acoustic metamaterials, Reviews in Physics, 4:100031, doi: 10.1016/j.revip.2019.100031.
Zhang H., Xiao Y., Wen J., Yu D., Wen X. (2016), Ultra-thin smart acoustic metasurface for lowfrequency sound insulation, Applied Physics Letters, 108(14): 141902, doi: 10.1063/1.4945664.
Zhang S. (2010), Acoustic metamaterial design and applications, Ph.D. Dissertation, Graduate College of the University of Illinois, http://hdl.handle.net/2142/16524.
Zhang X., Qu Z.,Wang H. (2020), Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures, iScience, 23(5): 101110, doi: 10.1016/j.isci.2020.101110.
Zielinski T.G. et al. (2020), Reproducibility of soundabsorbing periodic porous materials using additive manufacturing technologies: round robin study, Additive Manufacturing, 36: 101564, doi: 10.1016/j.addma.2020.101564.
Zigoneanu L., Popa B., Cummer S.A. (2014), Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials, 13(4): 352–355, doi: 10.1038/NMAT3901.
Ziolkowski R.W. (2014), Metamaterials: The early years in the USA, EPJ Applied Metamaterials, 1: 5, doi: 10.1051/epjam/2014004.
DOI: 10.24425/aoa.2022.140727