Archives of Acoustics, 48, 2, pp. 249–271, 2023
10.24425/aoa.2023.145236

Review of Methodologies in Recent Research of Human Echolocation

Michał BUJACZ
http://www.eletel.p.lodz.pl/bujacz
Lodz University of Technology
Poland

Bartłomiej SZTYLER
Lodz University of Technology
Poland

Natalia WILEŃSKA
Lodz University of Technology
Poland

Karolina CZAJKOWSKA
Lodz University of Technology
Poland

Paweł STRUMIŁŁO
Lodz University of Technology
Poland

The presented review discusses recent research on human echolocation by blind and sighted subjects, aiming to classify and evaluate the methodologies most commonly used when testing active echolocation methods. Most of the reviewed studies compared small groups of both blind and sighted volunteers, although one in four studies used sighted testers only. The most common trial procedure was for volunteers to detect or localize static obstacles, e.g., discs, boards, or walls at distances ranging from a few centimeters to several meters. Other tasks also included comparing or categorizing objects. Few studies utilized walking in real or virtual environments. Most trials were conducted in natural acoustic conditions, as subjects are marginally less likely to correctly echolocate in anechoic or acoustically dampened rooms. Aside from live echolocation tests, other methodologies included the use of binaural recordings, artificial echoes or rendered virtual audio. The sounds most frequently used in the tests were natural sounds such as the palatal mouth click and finger snapping. Several studies have focused on the use of artificially generated sounds, such as noise or synthetic clicks. A promising conclusion from all the reviewed studies is that both blind and sighted persons can efficiently learn echolocation.
Keywords: echolocation; blindness; testing methodology
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Andrade R., Baker S., Waycott J., Vetere F. (2018), Echo-house: Exploring a virtual environment by using echolocation, [in:] Proceedings of the 30th Australian Conference on Computer-Human Interaction, pp. 278–289, doi: 10.1145/3292147.3292163.

Andrade R., Waycott J., Baker S., Veterie F. (2021), Echolocation as a means for people with visual impairment (PVI) to acquire spatial knowledge of virtual space, ACM Transactions on Accessible Computing, 14(1): 1–25, doi: 10.1145/3448273.

Arias C., Bermejo F., Hüg M.X., Venturelli N., Rabinovich D., Skarp A.O. (2012), Echolocation: An action-perception phenomenon, New Zealand Acoustics, 25(2): 20–27.

Arias C., Ramos O.A. (1997), Psychoacoustic tests for the study of human echolocation ability, Applied Acoustics, 51(4): 399–419, doi: 10.1016/S0003-682X(97)00010-8.

Bogus M., Bujacz M. (2021), Analysis of mouth click sounds used in echolocation, [in:] 2021 Signal Processing Symposium (SPSympo), pp. 23–25, doi: 10.1109/SPSympo51155.2020.9593698.

Bujacz M. et al. (2018), EchoVis: Training echolocation using binaural recordings – Initial benchmark results, [in:] Computers Helping People with Special Needs. ICCHP 2018. Lecture Notes in Computer Science, Miesenberger K., Kouroupetroglou G. [Eds.], Vol. 10897, pp. 102–109, doi: 10.1007/978-3-319-94274-2_15.

Bujacz M., Górski G., Matysik K. (2021), Mobile game development with spatially generated reverberation sound, [in:] Advances in Systems Engineering. ICSEng 2021. Lecture Notes in Networks and Systems, Borzemski L., Selvaraj H., Swiatek J. [Eds.], Vol. 364, pp. 69–78, Springer, doi: 10.1007/978-3-030-92604-5_7.

Bujacz M., Królak A., Górski G., Matysik K., Witek P. (2022a), Echovis – A collection of human echolocation tests performed by blind and sighted individuals: A pilot study, British Journal of Visual Impairment.

Bujacz M., Skulimowski P., Królak A., Sztyler B., Strumiłło P. (2022b), Comparison of echolocation abilities of blind and normally sighted humans using different source sounds, Vibrations in Physical Systems, 33(2), doi: 10.21008/j.0860-6897.2022.2.13.

Castillo-Serrano J.G., Norman L.J., Foresteire D., Thaler L. (2021), Increased emission intensity can compensate for the presence of noise in human click-based echolocation, Scientific Reports, 11: 1750, doi: 10.1038/s41598-021-81220-9.

Cooper S., Velazco P., Schantz H. (2020), Navigating in darkness: Human echolocation with comments on bat echolocation, Journal of the Human Anatomy and Physiology Society, 24(2): 36–41, doi: 10.21692/haps.2020.016.

Corder G.W., Foreman D.I. (2009), Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, John Wiley & Sons, Inc.

Dobrucki A., Plaskota P., Pruchnicki P., Pec M., Bujacz M., Strumiłło P. (2010). Measurement system for personalized head-related transfer functions and its verification by virtual source localization trials with visually impaired and sighted individuals, Journal of The Audio Engineering Society, 58(9): 724–738.

Dodsworth C., Norman L.J., Thaler L. (2020), Navigation and perception of spatial layout in virtual echo-acoustic space, Cognition, 197: 104185, doi: 10.1016/j.cognition.2020.104185.

Ekkel M.R., van Lier R., Steenbergen B. (2017), Learning to echolocate in sighted people: A correlational study on attention, working memory and spatial abilities, Experimental Brain Research, 235: 809–818, doi: 10.1007/s00221-016-4833-z.

Fiehler K., Schütz I., Meller T., Thaler L. (2015), Neural correlates of human echolocation of path direction during walking, Multisensory Research, 28(1–2): 195–226, doi: 10.1163/22134808-00002491.

Flanagin V.L. et al. (2017), Human exploration of enclosed spaces through echolocation, Journal of Neuroscience, 37(6): 1614–1627, doi: 10.1523/JNEUROSCI.1566-12.2016.

Fundacja Instytut Rozwoju Regionalnego [FIRR] (2019), Training Curriculum. Active Echolocation for People with Visual Impairment.

Gori M., Sandini G., Martinoli C., Burr D.C. (2014), Impairment of auditory spatial localization in congenitally blind human subjects, Brain: A Journal of Neurology, 137: 288–293, doi: 10.1093/brain/awt311.

Griffin D.R. (1958), Listening in the Dark: The Acoustic Orientation of Bats and Men, Yale University Press.

Heller L.M., Schenker A., Grover P., Gardner M. (2017), Evaluating two ways to train sensitivity to echoes to improve echolocation, [in:] The 23rd International Conference on Auditory Display (ICAD 2017), pp. 159–166, doi: 10.21785/icad2017.053.

Holmes N. (2011), An Echolocation Training Package, International Journal of Orientation & Mobility, 4(1): 84–91.

Kish D. (2003), Sonic Echolocation: A Modern Review and Synthesis of the Literature.

Kish D., Hook J. (2017), Echolocation and Flash Sonar, American Printing House.

Kolarik A.J., Cirstea S., Pardhan S., Moore B.C.J. (2014), A summary of research investigating echolocation abilities of blind and sighted humans, Hearing Research, 310: 60–68, doi: 10.1016/j.heares.2014.01.010.

Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. (2016), Auditory distance perception in humans: A review of cues, development, neuronal bases, and effects of sensory loss, Attention, Perception, & Psychophysics, 78(2): 373–395, doi: 10.3758/s13414-015-1015-1.

Kolarik A.J., Pardhan S., Moore B.C.J. (2021), A framework to account for the effects of visual loss on human auditory abilities, Psychological Review, 128(5): 913–935, doi: 10.1037/rev0000279.

Kolarik A.J., Scarfe A.C., Moore B.C.J., Pardhan S. (2017), Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation, PLOS ONE, 12(4): e0175750, doi: 10.1371/journal.pone.0175750.

Kritly L., Sluys Y., Pelegrín-García D., Glorieux C., Rychtarikova M. (2021), Discrimination of 2D wall textures by passive echolocation for different reflected-to-direct level difference configurations, PLOS ONE, 16(5): 10.1371/journal.pone.0251397.

Lessard N., Paré M., Lepore F., Lassonde M. (1998), Early-blind human subjects localize sound sources better than sighted subjects, Nature, 395: 278–280, doi: 10.1038/26228.

Milne J.L., Goodale M.A., Thaler L. (2014), The role of head movements in the discrimination of 2-D shape by blind echolocation experts, Attention, Perception, & Psychophysics, 76: 1828–1837, doi: 10.3758/s13414-014-0695-2.

Nilsson M.E., Schenkman B.N. (2016), Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences, Hearing Research, 332: 223–232, doi: 10.1016/j.heares.2015.09.012.

Norman L.J., Dodsworth C., Foresteire D., Thaler L. (2021), Human click-based echolocation: Effects of blindness and age, and real-life implications in a 10-week training program, PLOS ONE, 16(6): e0252330, doi: 10.1371/journal.pone.0252330.

Norman L.J., Thaler L. (2018), Human echolocation for target detection is more accurate with emissions containing higher spectral frequencies, and this is explained by echo intensity, I-Perception, 9(3), doi: 10.1177/2041669518776984.

Norman L.J., Thaler L. (2020), Stimulus uncertainty affects perception in human echolocation: Timing, level, and spectrum, Journal of Experimental Psychology: General, 149(12): 2314–2331, doi: 10.1037/xge0000775.

Norman L.J., Thaler L. (2021), Perceptual constancy with a novel sensory skill, Journal of Experimental Psychology: Human Perception and Performance, 47(2): 269–281, doi: 10.1037/xhp0000888.

Rojas J.A.M., Hermosilla J.A., Montero R.S., Espí P.L.L. (2009), Physical analysis of several organic signals for human echolocation: Oral vacuum pulses, Acta Acustica United with Acustica, 95(2): 325–330, doi: 10.3813/AAA.918155.

Rosenblum L., Gordon M.S., Jarquin L. (2000), Echolocating distance by moving and stationary listeners, Ecological Psychology, 12(3): 181–206, doi: 10.1207/S15326969ECO1203_1.

Rychtarikova M., Zelem L., Kritly L., Garcia D.P., Chmelík V., Glorieux C. (2017), Auditory recognition of surface texture with various scattering coefficients, The Journal of the Acoustical Society of America, 141(5): 3452–3452, doi: 10.1121/1.4987157.

Schenkman B.N., Gidla V.K. (2020), Detection, thresholds of human echolocation in static situations for distance, pitch, loudness and sharpness, Applied Acoustics, 163: 107214, doi: 10.1016/j.apacoust.2020.107214.

Schenkman B.N., Jansson G. (1986), The detection and localization of objects by the blind with the aid of long-cane tapping sounds, Human Factors, 28(5): 607–618.

Schenkman B.N., Nilsson M., Grbic N. (2016), Human echolocation: Acoustic gaze for burst trains and continuous noise, Applied Acoustics, 106: 77–86, doi: 10.1016/j.apacoust.2015.12.008.

Schenkman B.N., Nilsson M.E. (2010), Human echolocation: Blind and sighted persons’ ability to detect sounds recorded in the presence of a reflecting object, Perception, 39(4): 483–501, doi: 10.1068/p6473.

Schenkman B.N., Nilsson M.E. (2011), Human echolocation: Pitch versus loudness information, Perception, 40(7): 840–852, doi: 10.1068/p6898.

Schörnich S., Nagy A., Wiegrebe L. (2012), Discovering your inner bat: Echo-acoustic target ranging in humans, Journal of the Association for Research in Otolaryngology: JARO, 13(5): 673–682, doi: 10.1007/s10162-012-0338-z.

Smith G.E., Baker C.J. (2012), Human echolocation waveform analysis, [in:] IET International Conference on Radar Systems (Radar 2012), doi: 10.1049/cp.2012.1595.

Stock R. (2022), Hearing echoes as an audile technique, [in:] Schillmeier M., Stock R., Ochsner B. [Eds.], Techniques of Hearing. History, Theory and Practices, pp. 55–65, Routledge, doi: 10.4324/9781003150763-6.

Supa M., Cotzin M., Dallenbach K.M. (1944), “Facial vision”: The perception of obstacles by the blind, The American Journal of Psychology, 57(2): 133–183, doi: 10.2307/1416946.

Teng S., Whitney D. (2011), The acuity of echolocation: Spatial resolution in the sighted compared to expert performance, Journal of Visual Impairment & Blindness, 105(1): 20–32.

Thaler L. et al. (2017), Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis, PLOS Computational Biology, 13(8): e1005670, doi: 10.1371/journal.pcbi.1005670.

Thaler L., Antoniou M., Zhang X., Kish D. (2020a), The flexible action system: Click-based echolocation may replace certain visual functionality for adaptive walking, Journal of Experimental Psychology: Human Perception and Performance, 46(1): 21–35, doi: 10.1037/xhp0000697.

Thaler L., Arnott S.R., Goodale M.A. (2011), Neural correlates of natural human echolocation in early and late blind echolocation experts, PLOS ONE, 6(5): e20162, doi: 10.1371/journal.pone.0020162.

Thaler L., Castillo-Serrano J. (2016), People’s ability to detect objects using click-based echolocation: A direct comparison between mouth-clicks and clicks made by a loudspeaker, PLOS ONE, 11(5): e0154868, doi: 10.1371/journal.pone.0154868.

Thaler L., De Vos H.P.J.C., Kish D., Antoniou M., Baker C.J., Hornikx M.C.J. (2019), Human click-based echolocation of distance: Superfine acuity and dynamic clicking behaviour, Journal of the Association for Research in Otolaryngology, JARO, 20(5): 499–510, doi: 10.1007/s10162-019-00728-0.

Thaler L., De Vos R., Kish D., Antoniou M., Baker C., Hornikx M. (2018), Human echolocators adjust loudness and number of clicks for detection of reflectors at various azimuth angles, Proceedings of the Royal Society B: Biological Sciences, 285(1873): 20172735, doi: 10.1098/rspb.2017.2735.

Thaler L., Foresteire D. (2017), Visual sensory stimulation interferes with people’s ability to echolocate object size, Scientific Reports, 7(1): 13069, doi: 10.1038/s41598-017-12967-3.

Thaler L., Goodale M.A. (2016), Echolocation in humans: An overview, WIREs Cognitive Science, 7(6): 382–393, doi: 10.1002/wcs.1408.

Thaler L., Zhang X., Antoniou M., Kish D.C., Cowie D. (2020b), The flexible action system: Click-based echolocation may replace certain visual functionality for adaptive walking, Journal of Experimental Psychology: Human Perception and Performance, 46(1): 21–35, doi: 10.1037/xhp0000697.

Tirado C., Gerdfeldter B., Kärnekull S.C., Nilsson M.E. (2021), Comparing echo-detection and echo-localization in sighted individuals, Perception, 50(4): 308–327, doi: 10.1177/03010066211000617.

Tirado C., Lundén P., Nilsson M.E. (2019), The Echobot: An automated system for stimulus presentation in studies of human echolocation, PLOS ONE, 14(10): e0223327, doi: 10.1371/journal.pone.0223327.

Tonelli A., Brayda L., Gori M. (2016), Depth echolocation learnt by novice sighted people, PLOS ONE, 11(6): e0156654, doi: 10.1371/journal.pone.0156654.

Tonelli A., Campus C., Brayda L. (2018), How body motion influences echolocation while walking, Scientific Reports, 8(1): 15704, doi: 10.1038/s41598-018-34074-7.

Tonelli A., Campus C., Gori M. (2020), Early visual cortex response for sound in expert blind echolocators, but not in early blind non-echolocators, Neuropsychologia, 147: 107617, doi: 10.1016/j.neuropsychologia.2020.107617.

van de Schoot R., Miocevic M. [Eds.] (2020), Small Sample Size Solutions a Guide for Applied Researchers and Practitioners, Routledge, doi: 10.4324/9780429273872.

Vercillo T., Milne J.L., Gori M., Goodale M.A. (2014), Enhanced auditory spatial localization in blind echolocators, Neuropsychologia, 67: 35–40, doi: 10.1016/j.neuropsychologia.2014.12.0.

Voss P., Lassonde M., Gougoux F., Fortin M., Guillemot J.-P., Lepore F. (2004), Early- and late-onset blind individuals show supra-normal auditory abilities in far-space, Current Biology, 14(19): 1734–1738, doi: 10.1016/j.cub.2004.09.051.

Wallmeier L., Wiegrebe L. (2014), Ranging in human sonar: Effects of additional early reflections and exploratory head movements, PLOS ONE, 9(12): e115363, doi: 10.1371/journal.pone.0115363.




DOI: 10.24425/aoa.2023.145236