10.24425/aoa.2023.146812
Research on the Performance Optimization of Turbulent Self-Noise Suppression and Sound Transmission of Acoustic Windows Made from Functionally Graded Material
References
Brekhovskikh L. (2012), Waves in Layered Media, Elsevier.
Burton S.A. (1998), A cost effective solution for noise free GRP sonar domes in dynamic conditions, [in:] UDT 1998 Conference Proceedings, pp. 277–281.
Caiazzo A, Desmet W.A. (2016), A generalized Corcos model for modelling turbulent boundary layer wall pressure fluctuations, Journal of Sound and Vibration, 372: 192–210, doi: 10.1016/j.jsv.2016.02.036.
Chandra N., Raja S., Gopal K.V.N. (2014), Vibro-acoustic response and sound transmission loss analysis of functionally graded plates, Journal of Sound & Vibration, 333(22): 5786–5802, doi: 10.1016/j.jsv.2014.06.031.
Chandra N., Raja S., Gopal K.V.N. (2015), A comprehensive analysis on the structural–acoustic aspects of various functionally graded plates, International Journal of Applied Mechanics, 7(5): 1550072, doi: 10.1142/S1758825115500726.
Cremer L., Heckl M., Petersson B. (2005), Structure-borne Sound: Structural Vibration Sand Sound Radiation at Audio Frequencies, Springer-Verlag.
Crighton D.G., Dowling A.P., Williams J.E., Heckl M., Leppington F.G. (1992), Modern Methods in Analytical Acoustics, Springer-Verlag, pp. 452–509.
George N., Pitchaimani J., Murigendrappa S., Lenin Babu MC. (2016), Vibro-acoustic behavior of functionally graded carbon nanotube reinforced polymer nanocomposite plates, [in:] Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(7): 566–581, doi: 10.1177/1464420716640301.
Ham Y., Kim J., Chang H. (2018), A study on the improvement of adhesive mixing ratio about acoustic window for enhancing sonar performance of submarine, Journal of the Korea Institute of Military Science and Technology, 21(4): 481–488, doi: 10.9766/KIMST.2018.21.4.481.
Hoffmann C. (1998), Integrated design approach for sonar domes, [in:] UDT 1998 Conference Proceedings, pp. 83–86.
Hosseini-Hashemi S., Zare M., Fadaee S.R. (2010), A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates, International Journal of Mechanical Sciences, 53(1): 11–12, doi: 10.1016/j.ijmecsci.2010.10.002.
Iqbal Z., Naeem M.N., Sulta N. (2009), Vibration characteristics of FGM circular cylindrical shells using wave propagation approach, Applied Mathematics and Mechanics, 208: 237–248, doi: 10.1007/s00707-009-0141-z.
Karpfinger F., Gurevich B., Bakulin A. (2008), Modeling of wave dispersion along cylindrical structures using the spectral method, The Journal of the Acoustical Society of America, 124(2): 859–865, doi: 10.1121/1.2940577.
Karpfinger F., Valero H.-P., Gurevich B., Bakulin A., Sinha B. (2010), Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures, Geophysics, 75(3): H19–H27, doi: 10.1190/1.3380590.
Kumar B.R., Ganesan N., Sethuraman R. (2009), Vibro-acoustic analysis of functionally graded elliptic disc under thermal environment, Mechanics of Advanced Material & Structures, 16(2): 160–172, doi: 10.1080/15376490802625506.
Lane R. (1981), Absorption mechanisms for waterborne sound in Alberich Anechoic layers, Ultrasonics, 19(1): 28–30, doi: 10.1016/0041-624X(81)90029-9.
Lavender M.A. (1994), The application of muti-layer modeling to dome design and hull treatments, [in:] UDT 1994 Conference Proceedings, pp. 296–299.
Lee J.-H., Kim B.-N., Shin K.-K., Yoon S.W. (2010), Insertion loss of sound waves through composite acoustic window materials, Current Applied Physics, 10(1): 138–144, doi: 10.1016/j.cap.2009.05.017.
Liu Y., Compson C., Liu M. (2004), Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells, Journal of Power Sources, 138(1–2): 194–198, doi: 10.1016/j.jpowsour.2004.06.035.
Maidanik G. (1968), Domed sonar system, The Journal of the Acoustical Society of America, 44(1): 113–124, doi: 10.1121/1.1911045.
Morse P.M., Ingard K.U. (1986), Theoretical Acoustics, Princeton University Press.
Mortensen A., Suresh S. (1995), Functionally graded metals and metal-ceramic composites: Part 1 processing, International Materials Reviews, 40(6): 239–265, doi: 10.1179/imr.1995.40.6.239.
Pompe W. et al. (2003), Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362(1–2): 40–60, doi: 10.1016/S0921-5093(03)00580-X.
Prakash T., Ganapath M. (2006), Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method, Composites Part B: Engineering, 37(7–8): 642–649, doi: 10.1016/j.compositesb.2006.03.005.
Rabbani V., Hodaei M., Dend X., Lu H., Hui D., Wu N. (2019), Sound transmission through a thick-walled FGM piezo-laminated cylindrical shell filled with and submerged in compressible fluids, Engineering Structures, 197: 109323, doi: 10.1016/j.engstruct.2019.109323.
Shang E.C. (1965), An approximate formula for the wave reflection from gradual-transition absorbers [in Chinese], ACTA Acustica, pp. 192–197.
Skelton E.A., James J.H. (1997), Theoretical Acoustics of Underwater Structures, World Scientific.
Srivastava S.K. (1998), Ocean engineering aspects of submarine sonar dome, [in:] UDT 1998 Conference Proceedings, pp. 325–329.
Tang W.L., Yu M.S.,Wang B. (2020), Hydrodynamic Noise Theory [in Chinese], Science Press.
Yu M.S., Li D.S., Gong L., Xu J. (2005), Design of sandwich acoustic window for sonar dome [in Chinese], Chinese Journal of Acoustics, 30(5): 427–434, doi: 10.15949/j.cnki.0371-0025.2005.05.007.
Zhao X., Lee Y.Y., Liew K.M. (2009), Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures, 90(2): 161–171, doi: 10.1016/j.compstruct.2009.03.005.
Zhou L., Liu J.S., Hu H.H. (2020), Study on acoustic transmission performance of functionally gradient materials under turbulent excitation, [in:] Noise and Vibration Control, 40(5): 71–75+88.
DOI: 10.24425/aoa.2023.146812