10.24425/aoa.2024.148808
Time-Domain Analysis of Echoes from Solid Spheres and Spherical Shells with Separated Transmit-Receive Configurations
References
Anderson S.D. (2012), Space-time-frequency processing from the analysis of bistatic scattering for simple underwater targets, Ph.D. Thesis, College of Engineering, George W. Woodruff School of Mechanical Engineering.
Apostoloudia A., Douka E., Hadjileontiadis L.J., Rekanos I.T., Trochidis A. (2007), Crack detection on beams by time-frequency analysis of transient flexural waves, Archives of Acoustics, 32(4): 941–954.
Ayres V.M., Gaunaurd G.C., Tsui C.Y., Werby M.F. (1987), The effects of Lamb waves on the sonar cross-sections of elastic spherical shells, International Journal of Solids and Structures, 23(7): 937–946, doi: 10.1016/0020-7683(87)90088-6.
Bednarz J. (2017), Operational modal analysis for crack detection in rotating blades, Archives of Acoustics, 42(1): 105–112, doi: 10.1515/aoa-2017-0011.
Diercks K.J., Hickling R. (1967), Echoes from hollow aluminum spheres in water, The Journal of the Acoustical Society of America, 41(2): 380–393, doi: 10.1121/1.1910349.
Ding D., Chen C.X., Kong H.M., Fan J., Peng Z.L. (2023), Acoustic coding based on high frequency time domain echo of layered elastic spherical shells in water [in Chinese], Applied Acoustics, 42(4): 781–791.
Fan W., Fan J., Wang X.N. (2012), Application of the SWT method to scattering from water-filled elastic spherical shells [in Chinese], Journal of Ship Mechanics, 16(6): 705–715.
Fawcett J.A. (2015), Computing the scattering from slightly deformed spherical shells, IEEE Journal of Oceanic Engineering, 41(3): 682–688, doi: 10.1109/JOE.2015.2478995.
Gaunaurd G., Überall H. (1985), Relation between creeping-wave acoustic transients and the complex-frequency poles of the singularity expansion method, The Journal of the Acoustical Society of America, 78(1): 234–243, doi: 10.1121/1.392564.
Gaunaurd G.C., Überall H. (1983), RST analysis of monostatic and bistatic acoustic echoes from an elastic sphere, The Journal of the Acoustical Society of America, 73(1): 1–12, doi: 10.1121/1.388839.
Gaunaurd G.C., Werby M.F. (1987), Lamb and creeping waves around submerged spherical shells resonantly excited by sound scattering, The Journal of the Acoustical Society of America, 82(6): 2021–2033, doi: 10.1121/1.395646.
Gaunaurd G.C., Werby M.F. (1991), Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells, The Journal of the Acoustical Society of America, 90(5): 2536–2550, doi: 10.1121/1.402059.
Gunderson A.M., España A.L., Marston P.L. (2017), Spectral analysis of bistatic scattering from underwater elastic cylinders and spheres, The Journal of the Acoustical Society of America, 142(1): 110–115, doi: 10.1121/1.4990690.
Kargl S.G., Williams K.L., Thorsos E.I. (2012), Synthetic aperture sonar imaging of simple finite targets, IEEE Journal of Oceanic Engineering, 37(3): 516–532, doi: 10.1109/JOE.2012.2200815.
Li X., Wu Y. (2019), Feature extraction for acoustic scattering from a buried target, Journal of Marine Science and Application, 18: 380–386, doi: 10.1007/s11804-019-00102-9.
Long Y.L., Wen X.L., Xie C.F. (1994), An implementation of a root finding algorithm for transcendental functions in a complex plane [in Chinese], Journal on Numerical Methods and Computer Applications, pp. 88–92.
Marston P.L., Sun N.H. (1992), Resonance and interference scattering near the coincidence frequency of a thin spherical shell: An approximate ray synthesis, The Journal of the Acoustical Society of America, 92(6): 3315–3319, doi: 10.1121/1.404181.
Qiao S., Shang X., Pan E. (2016), Elastic guided waves in a coated spherical shell, Nondestructive Testing and Evaluation, 31(2): 165–190, doi: 10.1080/10589759.2015.1079631.
Su J., Wang F., Du S. (2017), An elastic wave enhancement method based on modified bright point model, [in:] 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4, doi: 10.1109/ICSPCC.2017.8242491.
Tang W.L., Fan J., Ma Z.C. (2018), Elastic acoustic scattering mechanism of targets in water, The Acoustic Scattering of Underwater Target [in Chinese], pp. 79–84, Science Press, China.
Thompson M. (2023), Time-frequency sonar detection of elastic wave reradiation, Ph.D. Thesis, Electrical and Computer Engineering, Auburn University.
Too G.P., Lin Y.W., Ke Y.C. (2014), Echoes analysis from spherical elastic shells by using iterative time reversal mirror, [in:] OCEANS 2014 – TAIPEI, pp. 1–5, doi: 10.1109/OCEANS-TAIPEI.2014.6964463.
Überall H., Gaunaurd G.C., Murphy J.D. (1982), Acoustic surface wave pulses and the ringing of resonances, The Journal of the Acoustical Society of America, 72(3): 1014–1017, doi: 10.1121/1.388232.
Williams K.L., Marston P.L. (1985), Backscattering from an elastic sphere: Sommerfeld–Watson transformation and experimental confirmation, The Journal of the Acoustical Society of America, 78(3): 1093–1102, doi: 10.1121/1.393028.
Xia Z., Li X., Meng X. (2016), High resolution time-delay estimation of underwater target geometric scattering, Applied Acoustics, 114: 111–117, doi: 10.1016/j.apacoust.2016.07.016.
Yu X., Peng L., Yu G. (2014), Extracting the subsonic anti-symmetric lamb wave from a submerged thin spherical shell backscattering through iterative time reversal, Journal of Ocean University of China, 13: 589–596, doi: 10.1007/s11802-014-2166-8.
DOI: 10.24425/aoa.2024.148808